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Abstract

For novice users, teaching robots by demon-
stration can be a challenging and often frus-
trating process due to communication barriers
and the repetitive nature of the task. Compet-
itive interactions and gamification have been
successfully applied in fields such as educa-
tion to enhance engagement, yet their poten-
tial in human-robot teaching remains largely
unexplored. In this paper, we investigate how
these methods can improve the teaching expe-
rience for novice users by conducting an exper-
iment in which participants taught a robot to
perform two tasks: 1) grasping objects and 2)
sorting them. Twenty participants took part
in a lab study in which they experienced teach-
ing a robot in a gamified competitive way or
not. Our results show that competitive human-
robot interactions significantly increased teach-
ing efficiency, enhanced the perceived compe-
tence of the robot and increased user enjoy-
ment. Additionally, participants were shown
both decision trees and tables representing
the robot’s learning process, and we collected
comparative feedback on these visualisations.
Qualitative responses highlighted the impor-
tance of familiarity with the visualisations and
the need for clear guidance on interpreting
them. These findings suggest that integrating
competitive elements and intuitive visual repre-
sentations can enhance the human-robot teach-
ing experience for novice users, making it more
engaging and effective.

1 Introduction

Robots are increasingly being adopted by users with lit-
tle to no experience in programming or robotics. Since
it is impractical to pre-program robots for every possible
task or user preference before deployment, it is crucial

that these novice users are able to teach robots to per-
form tasks in ways that align with their specific needs
and preferences. To address this challenge, interactive
robot learning has emerged as a promising approach,
enabling robots to adapt and learn from human input
through direct interactions.

In recent years, research on interactive robot learn-
ing has largely focused on improving the robot’s perfor-
mance, often overlooking the human teacher’s role in the
process. Since the effectiveness of robot learning heavily
depends on the human teacher, it is crucial to examine
the teacher’s experience in order to improve human-in-
the-loop robot learning systems [Amershi et al., 2014].
User perception plays a key role, not only in robot perfor-
mance but also in fostering user trust, which influences
engagement and overall satisfaction. A robot perceived
as competent increases trust, which can lead to greater
user acceptance and a more enjoyable training process
[Bryant et al., 2020] [Hancock et al., 2011]. Trust is crit-
ical in human-robot interaction, as users are more likely
to rely on systems they trust and abandon those they
do not [Lewandowsky et al., 2000] [Muir and Moray,
1996]. When users are aware of a system’s potential
faults, their trust remains intact, provided the system is
predictable and transparent in its learning process [Lewis
et al., 2018].

Furthermore, the repetitive and often monotonous na-
ture of training by demonstration can lead to human
disengagement, negatively impacting task performance
and teaching quality [Pekrun et al., 2010]. The novelty
of interacting with robots tends to fade quickly, leading
many users to abandon their systems due to a lack of
sustained engagement [Robinson et al., 2019], [Gockley
et al., 2005][De Graaf et al., 2017]. This underscores the
need for more engaging and efficient training methods.

Another key challenge in interactive robot learning
is that a teacher is typically required to have a good
understanding of the learning robot’s state in order to
teach it tasks effectively. As the human and the robot
do not share the same mental model or language, es-



pecially when the human teacher is a robotics novice,
this can make the teaching task inefficient, worsening
the teacher’s experience [Bilal et al., 2024]. In order
to address this, several approaches to convey the robot
learning state have been proposed such as displaying the
robot’s decision-making using And-Or graphs [Liu et al.,
2021] and decision trees [Phaijit et al., 2023], visualising
estimated trajectories [Sena and Howard, 2020], or al-
lowing the robot to ask questions [Cakmak et al., 2010;
Chao et al., 2010; Habibian et al., 2022; Cakmak and
Thomaz, 2012]. Although these methods have been
shown to be effective, we currently lack more insight-
ful qualitative data from the novice users. For instance,
in the study by [Phaijit et al., 2023], decision trees and
demonstration levels were shown to lead to similar teach-
ing efficiencies. However, users were not asked regarding
their personal preferences such as which one they pre-
ferred or found the most helpful.

In this paper, we present an experiment comparing
competitive and non-competitive human-robot interac-
tions during robot Learning from Demonstration (LfD)
in two common household tasks: grasping and sorting.
We explore how competitive interactions can enhance
perceived robot competency, user enjoyment, and teach-
ing efficiency by reducing the number of demonstrations
required. Additionally, we gather qualitative data on
users’ opinions of two different methods for visualising
the robot’s learning process: decision trees and tabular
data.

2 Related Work

2.1 Human-Robot Competitive Interaction

Human-robot interactions in learning environments can
be collaborative or competitive. While the effectiveness
of human advisory teaching is well-established, adver-
sarial teaching, or human-robot competition in teach-
ing, remains relatively new. Duan et al. [Duan et al.,
2020] found that adversarial input improved robot grasp-
ing performance compared to learning without human
intervention. However, participants often struggled to
apply perturbations effectively, despite being instructed
to do so. To address this, Yoon et al. [Yoon and Niko-
laidis, 2020] introduced a framework that distinguished
between collaborative and adversarial interactions, en-
suring the robot learned only from adversarial interven-
tions, resulting in improved performance. Hamaya et al.
[Hamaya et al., 2021] further demonstrated that combin-
ing human advisory and adversarial input in a robotic
peg-in-hole task enhanced performance compared to ran-
dom or no interactions. The existing research focuses on
reinforcement learning, requiring humans to determine
when and how to intervene. In contrast, Learning from
Demonstration (LfD) may simplify this process by al-

lowing the human to perform the task directly, without
needing to deliberately advise or hinder the agent.

Although competitive interactions and gamifications
are vastly employed in human educational tasks due
to their strong evidence of increasing user engagement
[Caponetto et al., 2014], there is however a lack of re-
search in how these methods could be used to assist in
the human’s robot teaching task. [Phaijit et al., 2022b]

discovered that competitive interactions between the hu-
man and the agent allowed for a more enjoyable experi-
ence for the novice human during the task of teaching the
agent to play Pacman. The participants reported that
they felt the agent in the competitive mode was more
competent. While this study offered a valuable step to-
wards increasing user engagement in human-robot teach-
ing, it was limited in two key ways: 1) it was a gaming
task, which differs from the practical tasks humans typi-
cally teach robots in home environments, 2) the learning
embodied agent was entirely virtual, which may differ
from competitive interactions involving a physical robot.

2.2 Visual representation of the robot
learning state

In order for the human teacher to understand the robot’s
current learning state, there must be robot feedback
shown to the user. This can be represented in many
forms such as graphical [Liu et al., 2018] or semantic rep-
resentations [Diehl et al., 2020; Wang and Belardinelli,
2022] of the robot’s understanding and learning process
for the task. It can be used to “augment human per-
ception of the robot” [Phaijit et al., 2022a] to allow for
better human-robot interaction.

Decision trees have been the chosen approach for many
applications due to their ease of readability for users.
Although these are commonly used by machine learn-
ing practitioners, little research has been conducted on
the perspective of a non-expert user. In [Phaijit et al.,
2022b], the authors mentioned that non-expert partici-
pants had difficulties understanding decision trees. For
instance, novice users did not understand why the tree
may not show all the attributes. In order to build a sys-
tem to be used by novices, it is crucial that we heavily
take their perspectives into consideration.

In contrast to decision trees, information represented
in the form of tabular data is common in many non-
technical fields. The tabular form requires all records to
share the same features and all values must be numeri-
cal, categorical, or Boolean [Sahakyan et al., 2021]. Al-
though tabular data, or tables, are widely used amongst
people of all backgrounds, they are also commonly used
for robot and machine learning [Shwartz-Ziv and Armon,
2022; Gorishniy et al., 2021; Borisov et al., 2022].

Decision trees and tables are some of the most inter-
pretable forms of information. However, there is lim-



ited research comparing the two from the perspective of
human novices in Learning from Demonstration. This
highlights the need for deeper insights into how novices
perceive and engage with these different formats.

3 Research Questions

The user experience is comprised of pragmatic and hedo-
nistic qualities [Cansev et al., 2021; Fronemann, 2022].
This means in a robot teaching process, the user experi-
ence may be affected by pragmatic components such as
how well does the robot execute the task once taught?
How slow was the robot at learning? These questions
focus on the practical points of view of the experience
for the user. On the other hand, questions such as how
enjoyable or friendly is the interaction with the robot
provide the hedonistic insights to the user experience.

With the current unknowns in how competitive
human-robot interactions fare in robot learning, here we
seek to evaluate their effects. Although gamification has
positive effects in entertainment (such as video games)
and education for humans, could the same be applied
to human-in-the-loop robot learning where the human
takes on the role of a teacher?

We therefore propose to explore the following:

1. Does the competitive human-robot interaction im-
prove the robot learning process in terms of:

(a) performance?

(b) user preferences?

2. What are novice users’ opinions on decision trees
and tabular data on conveying the robot’s learning
process?

4 Experiment

In this work, we have both decision trees and tabular
information to assist the user with the robot teaching
task.

4.1 Tasks

The teaching is split into two different tasks: 1) teaching
the 7 degree of freedom Kinova Gen3 robot how to grasp
objects, and 2) teaching it to sort the objects into the
correct bowl. These tasks have been selected as they can
be seen as common household chores: picking up objects
as a way of tidying up the household, and putting them
away in the correct locations. This teaching scenario has
been simplified to allow for the robot to be able to fully
learn the task from scratch from the novice within the
experiment.

Grasping

Firstly, in the grasping task, the user selects an object to
teach the robot out of the two choices: a short cylinder
or a long cuboid. Upon selection, the participant places

the object in front of the robot at a fixed predetermined
location, with the object orientation the user wishes to
teach the robot to be able to grasp. Once the user is sat-
isfied with the selected object and its orientation, they
press confirm in the computer program interfacing with
the robot. They are then to select 1) the approach angle,
2) the gripper rotation, and 3) the gripper width (Figure
1) of the robot. For ease of understanding, as the user
varies these values, the robot can be seen to physically
adjust according to these settings. Once the desired val-
ues have been selected, the user can prompt the robot
via the computer program to attempt the grasp with
the selected values. The robot then performs the taught
demonstrations and the user may either press confirm to
add this to the list of demonstrations for the robot, or
re-do the demonstration.

Sorting

The procedure is similar to the grasping task. However,
the user is only required to select the object, out of the
24 objects available, that they wish to teach the robot
to sort. Then, the user is required to select the bowl for
the object to be placed in: keep or throw away bowls,
according to the shape and colour of the object. The
objects have the following shapes: 1) boxes, 2) cups,
and 3) cylinder blocks. The colours are: 1) red 2) yellow
3) orange, and 4) purple.

4.2 Competitive vs Non-Competitive
Modes

The teaching activity is split into two different modes:
competitive and non-competitive. In the competitive
mode, after the user has selected the object item as well
as its orientation to teach the robot, the program calcu-
lates the similarity between this example and the previ-
ously taught examples. If the similarity falls below the
threshold value, the user gets a point and this is dis-
played in the score tally. On the other hand, if the sim-
ilarity exceeds the threshold, the robot receives a point.
As the number of demonstrations provided to the robot
increases, the dissimilarity between a new demonstration
and the existing set of taught demonstrations is expected
to decrease. Hence the formula for the threshold was se-
lected such that it would decrease with the increasing
number of demonstrations: y = 2.5e−0.9−0.3x +0.1. The
threshold values were selected somewhat arbitrarily – it
was not too challenging to best the robot, yet selecting
a demonstration carelessly could mean the robot would
win. The optimisation of the threshold value is out of
this work’s scope.

For the grasping task, the similarity is calculated using
Manhattan distance between the new example’s object
shape, orientation and position compared to those of the
previously taught examples. For the sorting task, the



Figure 1: The inputs for the grasping task: 1) the approach angle where the user can choose for the robot to approach
the object from the front or from the top, 2) the gripper width, and 3) the gripper rotation

similarity is obtained simply by checking if the exact
shape and colour combination have been taught before.

4.3 User Interface Intervention

The two user interface (UI) interventions selected are:
decision trees and table. Both data forms are displayed
to the user in the interface (Figure 2) throughout the
teaching process.

In the grasping task, three decision trees are displayed
for making decisions on the approach angle, gripper rota-
tion and gripper width. Each row of the table (e.g. Fig-
ure 3) contains information on each demonstration: the
parameters of the input (object shape, object position,
object orientation, approach angle, gripper rotation and
gripper width) and the output (approach angle, gripper
rotation and gripper width).

In the sorting task, only one decision tree is shown for
making a decision on the bowl the object is sorted into.
The table displays the inputs (object shape and colour)
and the bowl it is to be sorted into.

Figure 2: Example screenshot of the robot teaching in-
terface

4.4 System Architecture

Unity Version 2020.3.1f1 was used for developing the
computer software that the user would be interacting
with the robot via. The robot functionality was built us-
ing Robot Operating System (ROS). The ROS package

Figure 3: Example of the table in the grasping task

Figure 4: Example of the decision trees in the grasping
task

ROS TCP Endpoint was used to bridge the communica-
tion between Unity and ROS – enabling the robot and
the user interface to communicate (Figure 5). Unique
visual tags attached to objects were detected by the
robot’s RGB-D camera using the ar track alvar ROS
package. The robot’s vision module was supported us-
ing the ros kortex vision ROS package. MoveIt Motion
Planning Framework was used to assist with the robot’s
motion planning. The robot uses CART (Classification
and Regression Tree) algorithm for its decision-making.

4.5 Experimental procedure

The participants were split into two groups (Figure
6). The first group performed the tasks in the non-
competitive mode first, then in the competitive mode.
The second group performed tasks in the competitive
mode first before the non-competitive mode.

The grasping task was done before the sorting task for
both groups as we were not concerned with comparing
between grasping and sorting.



Figure 5: System structure and workflow

Before the experiment, the participants were taught
how to read the decision trees and the table such as
what the arrows meant and what the different columns
of the table were.

Figure 6: Experimental procedure

The post task experiment involves utilising the logged
demonstrations to reproduce the robot performance at
each number of demonstrations.

4.6 Robot interpretability assessment

In the grasping task, after four and eight demonstra-
tions, we asked the user to estimate the robot’s ability in
sampled subtasks – as proposed by [Phaijit et al., 2023]

for the robot interpretability assessment. For each ob-
ject, we sampled eight object orientations such as those
shown in Figure 7. In the sorting task, we performed in-
terpretability tests after six and twelve demonstrations.
In each test, we asked the user to estimate whether the
robot would successfully sort each of the 12 unique ob-
jects into the correct bowl.

4.7 Teaching efficiency assessment

To assess the teaching efficiency, we evaluated the num-
ber of demonstrations needed to teach the robot the
tasks, as suggested by [Sena and Howard, 2020], by col-
lecting the given demonstrations during the experiment.
If the robot had not fully learnt by the second round of
interpretability assessments, we asked the participant to
keep teaching the robots until it had fully learnt the task.
After the experiment, we conducted post-task analysis to
assess the number of demonstrations required to perform
the tasks successfully.

4.8 Participants

Twenty participants (11 M, 9 F) were recruited. The
age range was between 22 and 35 (M=27.90, SD=3.84).
All participants were screened to self-identify as robotics
and programming novices. The participants did not re-
ceive any monetary reimbursement. No identifiable data
was collected. The research was approved by the Univer-
sity’s Human Research Ethics Team (Project Reference
Number: iRECS5790).

4.9 Questionnaire

The participants answered the questionnaire before and
after the task. In the pre-task questionnaire, we asked
demographic questions about age and gender.

For the post-task questionnaire, the participants were
asked to answer the questions using a 5-point Likert
scale. They were also asked to provide reasoning behind
their answers.

• Q4. Which mode did you prefer – the competitive
mode or the non-competitive mode? Why?

• Q5. Which mode made you feel the robot was
more competent – the competitive mode or the non-
competitive mode? Why?

• Q6. Which intervention was easier to understand –
the decision trees or the table? Why?

• Q7. Which intervention was more effective in help-
ing you determine which demonstrations to teach
the robot – the decision trees or the table? Why?

• Q8. Which intervention did you prefer to use – the
decision trees or the table? Why?

The questionnaire was designed to be comparative to
reduce the cognitive load for the participants since they
are being asked to assess many variables such as the
mode and the user interface. It was also to encourage
the participants’ qualitative feedback to directly com-
pare between the options instead of rating them indi-
vidually. For instance, it is irrelevant how much they
enjoyed the competitive mode or the non-competitive
mode individually, on a Likert scale. This work’s scope
focuses on whether, given the choice, which option would
they would select.

5 Results & Discussion

5.1 Competitive vs Non-Competitive
Modes

The Shapiro test confirmed that the competitive vs non-
competitive performance data did not follow normal dis-
tribution. Hence, the Wilcoxon signed-rank test was
conducted to compare the experimental results between
the competitive and non-competitive modes.



Figure 7: Examples of the sampled object orientations during the robot interpretability assessment

Number of demonstrations required

In the grasping task, there was a significant difference
in the number of demonstrations required for the non-
competitive mode (M=7.4, SD=1.82) and the competi-
tive mode (M=5.7, SD=1.03); p = .004.

Likewise, in the sorting task, there was a significant
difference in the number of demonstrations required for
the non-competitive mode (M=11.4, SD=2.52) and the
competitive mode (M=9.4, SD=1.85); p = .02.

Overall, the competitive mode statistically signifi-
cantly reduced the number of demonstrations required,
indicating that it encouraged higher teaching efficiency
than the non-competitive mode.

Robot interpretability

In the grasping task, there was no significant difference in
the robot interpretability, or the number of correct inter-
pretations, in the first round of interpretation assessment
between the non-competitive mode (M=5.65, SD=1.50)
and the competitive mode (M=4.75, SD=1.41); p = .11.
There was also no significant difference for the second
round of interpretation assessment between the non-
competitive (M=5.65, SD=1.50) and the competitive
modes (M=5.65, SD=1.50); p = .54.

Similarly, for the sorting task, there was also no sig-
nificant difference for both the first round of assessment
(p = .87) and the second round (p = .64).

Overall, there was no statistically significant difference
in the robot interpretability between the competitive and
non-competitive modes.

User Perspective

Preference As can be observed in Figure 8a, the over-
whelming majority of the participants preferred the com-
petitive mode to the non-competitive mode. The an-
swers ranged from strongly preferring the competitive
mode to not having a preference. The median was mod-
erately preferring the competitive mode. The general
consensus was that the participants found that the com-
petitive mode was 1) more transparent – they felt it pro-
vided more insights into the robot; “I like knowing what
it can and cannot do” and 2) more entertaining/fun as
it was like a game; “It makes the process more fun” and
“It’s more interesting as there are more interactions from

the robot...”. This was expected as gamification tends
to keep the user engaged in the task. Some of the par-
ticipants also noted that playing a game with a robot
while teaching it is new to them. Although gamification
is commonly applied to learning processes, it is rarely
used for the enjoyment of the teacher.

These results have therefore highlighted how using
gamification or competitive interactions may help to
make the teaching process more engaging for users and
make the users feel there is more transparency from the
robot.

Perceived competency The answers ranged from
strongly feeling that the robot was more competent in
the competitive mode, to moderately feeling the robot
was more competent in the non-competitive mode. The
median and the most frequent answers were moderately
feeling that the robot was more competent in the com-
petitive mode. The participants stated that because the
robot was aware of its own capabilities, the participants
felt the robot was smarter e.g. “...it knows whether it
can succeed, so it seems smarter.”. On the other hand,
there was a minority of people who felt that knowing the
robot did not know how to perform certain tasks, in fact,
made them feel that the robot was not very competent.
One participant in particular noted that not knowing the
robot’s ability made them feel like the robot was being
secretive and hence more cunning.

Overall, however, participants tended to perceive the
robot as more competent in the competitive mode, which
could foster greater trust in users. This increased per-
ception of competence may also encourage novice users
to engage more frequently with the robot. These find-
ings offer valuable preliminary insights into the potential
advantages of competitive human-robot interactions in
robot Learning from Demonstration.

5.2 User Interface Interventions

As for the UI interventions, the survey results on the
participants’ opinions on which of the interventions was
easier to understand, which was more effective for deter-
mining demonstrations to teach, and which was preferred
can be seen in Figure 8b.



(a) Questionnaire responses on competitive vs non-
competitive modes regarding i) which mode participants
preferred, and ii) which mode the participants felt the robot
was more competent in

(b) Questionnaire responses on user interface interventions re-
garding i) which intervention was easier to understand, ii)
which intervention was more effective for determining demon-
strations, and iii) which intervention was preferred.

Figure 8: Questionnaire results

Ease of understanding In terms of ease of under-
standing, the most frequent response was strongly feeling
that the decision trees were easier to understand, with
a frequency of nine. The median response was moder-
ately feeling the decision trees were easier to understand.
Participants generally favoured the decision trees due to
their simplicity, as they only required following a single
path and making binary choices (“yes” or “no”), whereas
the tabular format involved processing multiple columns
and rows of information. Some participants indicated
that, after receiving an explanation of how decision trees
functioned, they found them straightforward to inter-
pret. However, without manuals or instructions, they
felt they would have preferred the table due to their fa-
miliarity with tabular data. One participant noted that
if they were to use the system independently at home, a
comprehensive manual would be essential.

Interestingly, the smaller group of participants who
found the tabular format easier to understand remarked
that they found decision trees harder to follow and pre-
ferred the clarity and familiarity of tables.

From these findings, it can be concluded that clear and
thorough instruction is essential when introducing deci-
sion trees to novice users as a method for representing
the robot’s learning state.

Effectiveness for determining demonstrations to
teach next For the question of which UI intervention
was more effective for determining the demonstrations to
teach the robot, the median response falls between mod-
erately feeling the decision trees were more effective and
feeling that there was no difference. The most frequent
response was strongly feeling the decision trees were more
effective, with a frequency of eight. Compared to the
previous question of ease of understand which favoured

the decision trees, this one caused a slight tendency to-
wards selecting the table. Although the decision trees
were popular for their simplicity, some of the partici-
pants found that they tended to scan the table to find
what they had not yet taught the robot. The trees were
easy to follow, but ultimately did not contain as much
information as the table. Some of the participants pre-
ferred to have all the information laid out in front of
them compared to only seeing partial information that
the decision trees were providing them.

Nevertheless, the most frequent answer was still
strongly feeling the decision trees were more effective as
they were easier to follow, especially when there had
been a lot of demonstrations, the table would quickly
become congested.

Preference of User Interface Intervention In the
final question regarding the UI interventions, partici-
pants were asked which intervention they would prefer
to use if they could only select one. Responses were
evenly split between the two options, with the median re-
sponse indicating no preference. The most common an-
swers were moderately preferring the decision trees and
moderately preferring the table, each with a frequency
of 7 out of 20 responses. Despite a tendency towards
favouring decision trees in the previous questions, this
was not reflected here. The general sentiment was that
while decision trees were easier to process, participants
were more familiar with tabular data and found the table
more comprehensive. As such, if forced to choose, some
favoured the familiarity and completeness of the table,
while others preferred the simplicity of decision trees.

Though this question was not originally part of the
questionnaire, participants were also asked if they would
prefer using only one intervention or both. Remark-



ably, all twenty participants expressed a preference for
using both. While managing cognitive load is important,
the consensus was that having both decision trees and
the demonstration table displayed simultaneously was
preferable. Participants noted that each UI interven-
tion conveyed distinct information, and having access
to both would be beneficial. Although the simplicity of
the tasks in this study may have influenced these re-
sults, they remain relevant for robot training systems
designed with smaller numbers of demonstrations for
novice users. Determining at what point the information
might overwhelm novice users is beyond the scope of this
work. However, in most Learning from Demonstration
tasks, such as trajectory learning, fewer than ten demon-
strations are typically required [Paraschos et al., 2013;
Khansari-Zadeh and Billard, 2011; Ravichandar et al.,
2019].

6 Conclusion

In this work, we demonstrated that competitive human-
robot interactions can enhance the teaching process by
improving the teaching efficiency, the robot’s perceived
competency and user enjoyment. The competitive ele-
ments likely encouraged users to be more deliberate in
their demonstrations, resulting in greater teaching ef-
ficiency, which in turn contributed to a more positive
teaching experience. Additionally, the increased per-
ceived competency of the robot could foster greater user
trust, potentially encouraging continued use of robot
systems. Overall, our findings underscore the value of
incorporating competitive elements into human-in-the-
loop robot learning systems.

We also explored the use of decision trees and tables
as visual representations of the robot’s learning process.
While decision trees were generally preferred for their
clarity, users expressed a desire to have access to tab-
ular data as well. Future research should investigate
whether these preferences persist in more complex teach-
ing tasks, where the increased cognitive load might lead
users to favour having only one form of representation
rather than both. Moreover, user preferences were found
to be influenced by their familiarity with the visualisa-
tions and the clarity of the instructions provided, high-
lighting the importance of clear guidance on interpreting
them.

In this experiment, arbitrary thresholds were em-
ployed in the competitive mode. The choice of the
threshold value plays a critical role in the user’s demon-
stration selection. A threshold that is set optimally,
making the competitive mode appropriately challenging,
may motivate users to invest effort in selecting diverse
demonstrations. However, if the threshold is set too
high, with the competition perceived as overly difficult,
it could lead to user frustration, potentially deterring

continued use of the system. Conversely, a threshold
set too low may result in a lack of challenge, failing to
encourage users to provide more meaningful or varied
demonstrations. Future work should explore the impact
of different threshold values on both teaching efficiency
and user experience. A more deliberate threshold may
also help to improve robot interpretability.

It is worth noting that the positive results observed
in this study occurred in relatively short, simple tasks.
Longer or more tedious tasks may yield different out-
comes, and this remains an area for future exploration.
Additionally, this study did not account for participants’
backgrounds, which may have influenced their prefer-
ences for decision trees or tabular data. Gathering such
information in future studies could provide deeper in-
sights into how user characteristics impact interaction
preferences.
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