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ABSTRACT
In interactive agent learning, the human may teach in a collabo-
rative or adversarial manner. Past research has been focusing on
collaborative teaching styles as these are common in human educa-
tion settings, while overlooking adversarial ones despite promising
results in recent research. Moreover, agent performance has been
the main focal point while neglecting the perspective of the human
teacher, who is crucial to the instructional process. In this work,
we examine the impact of competitive and collaborative teaching
styles on agent learning and human perception. We conducted a
study (𝑁=40) for participants to demonstrate a task in different
interaction modes for teaching a computer agent: collaboratively,
competitively, or without interacting with the agent. Most partici-
pants reported that they preferred competing against the computer
agent to the other two modes. Despite smaller numbers of demon-
strations given from the user, the agent performance from the
interactive modes (collaborative and competitive) was comparable
to the non-interactive mode (solo). The agent was perceived as
being more competent in the competitive mode than the collabora-
tive mode despite the marginally worse in-task performance. These
preliminary findings suggest that competitive types of interaction,
when agents or robots learn from humans, lead to better human
perception of the agent’s learning when compared to collaborative,
and better user engagement when compared to non-interactive
learning from demonstrations.

CCS CONCEPTS
• Human-centered computing→ Interaction design; Empiri-
cal studies in HCI.
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1 INTRODUCTION
Interactive training of agents has increased over the years due
to the ability to integrate human expertise and individual pref-
erences, thereby improving the performance of the system [13].
However, research in this field has mainly been looking into inter-
action styles which are advisory or collaborative in nature, such
as giving feedback [7, 14, 16] or instructions [8, 21] to the agent
learner. In comparison, there has been very little research into hu-
man adversary in agent training. In this context, human adversary
refers to when the human trainer teaches the agent by interact-
ing adversarially with it. Recent studies have shown that human
adversarial teaching is able to produce robust agent performance
[6, 9, 24]. Yet, all existing human adversarial agent training studies
have been for reinforcement learning, which requires for the hu-
man to know exactly when and how to adverse/disturb the agent.
Whereas, teaching by demonstration may place less mental burden
on the teacher as s/he simply has to perform the task. However,
to the best of our knowledge, there has not yet been any research
on how human adversary may perform in learning from human
demonstration. Although it is certainly intuitive for the teacher to
interact with the agent in a supportive and advisory manner, there
still remain questions on how collaborative and competitive ways
of teaching compare with each other.

Moreover, current literature on interactive agent learning has
been heavily focused on the agent’s performance, while lacking the
human teacher’s perspective during the process. As, in this kind
of teaching framework, the effectiveness of the agent’s learning
highly depends on the human teacher [1], it is important that the
perspective of the teacher is studied in order to produce an effective
solution to agent learning. Not only is user perception important
for agent performance, it also influences user retention. For in-
stance, an agent’s perceived competency greatly impacts user trust
in an agent [4]. By building user trust, this can increase the user’s
willingness to accept the agent [10], making the training process
more pleasant for the teacher. Agent training can also typically
be repetitive, time-consuming and disengaging for the human. As
human disengagement has been negatively correlated with task
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performance [19], not only does this impact upon the user nega-
tively, but the reduction in teaching quality may also negatively
affect agent learning.

In this work, we conduct an exploratory study to investigate the
impact of collaborative and competitive human teaching manners
on both agent learning and human perception. We designed and
developed a modified Pacman computer game as a task to com-
pare between collaborative and competitive teaching styles. In the
collaborative mode, the user performs demonstrations while col-
laborating with the agent on the task. In the competitive mode, the
user demonstrates while competing against the agent on a task.
As a baseline, we also implemented a solo mode where the user
demonstrates the task without interacting with the agent. We con-
ducted a user study (𝑁=40) for participants to play all of the modes.
Our results show that demonstrations from the interactive modes
produced comparable results to those from the solo mode despite
the smaller numbers of demonstrations performed. We found that
for the solo and competitive modes, higher proportions of risks
made by the participants significantly improved the performance of
the agent. In regards to human perception, the participants reported
that they liked playing competitively the most and perceived the
agent in this mode as performing better than in the collaborative
mode despite the agent’s marginally worse in-task performance.

2 BACKGROUND
2.1 Learning from human teachers
Although learning from experience has shown to be effective in
autonomous agents [18], the learning process can be very slow.
Learning from demonstration, on the other hand, is a technique in
which the agent learns by observing the human teacher performing
the task. This provides examples for the agent to learn from, rather
than simply leaving it to acquire a sufficient amount of experience.
Similarly, when humans learn from observing and imitating oth-
ers, the learning process is much faster than using trial-and-error.
Behavioral cloning [2] is an approach which allows the agent to
learn by using information on the state of the demonstrator’s envi-
ronment, and the corresponding actions of the demonstrator. With
this knowledge, a classifier can be built to allow for the agent to
perform an imitation of the demonstrator’s behaviour.

Teaching is a skill and the requirement for the human to learn
how to teach on top of having to teach the agent can be adding
to the human’s mental load. It has been shown that increased cog-
nitive load negatively affects human task performance [15]. By
simply demonstrating rather than explicitly teaching the student,
this places less burden on the demonstrator as s/he simply has to
perform the actions without having to consider what inputs will
be the most conducive to agent learning. This is convenient as it
has also been found that human teachers tend to want to perform
demonstrations for the learning agent rather than giving feedback
only [11, 23].

By utilising our knowledge of the preferences of human teachers,
a better teaching process may be formulated for both the human
user and the agent learner. For these reasons, teaching by demon-
stration was chosen for agent training in our work.

2.2 Adversarial learning
Human-agent interactions in interactive agent learning can be col-
laborative or adversarial. While there has been ample research
showing the efficacy of human advisory teaching, human adver-
sarial teaching is still new. Duan et al. [6] discovered that human
adversary helped to improve the grasping performance of the robot
compared to the performance without human intervention. How-
ever, it was found that despite the participants being instructed
to act adversarially, at times, they would not apply perturbations
correctly as they found the act to be challenging. This led to the cre-
ation of Yoon et al.’s framework [24] which distinguished between
collaborative and adversarial interactions such that the robot would
only learn from adversarial interventions. They found that the per-
formance improved when using the framework. In 2021, Hamaya et
al. [9] found that mixing human advisory and human adversary in a
robotic peg-in-hole learning task improved the agent performance
when compared to scenarios with no or random interactions. Al-
though these studies paved the way for research into using human
adversary in agent learning, they did not compare the effects of
human adversary and human collaboration. All existing research on
agent training using human adversary has been in reinforcement
learning which places the burden on the human to recognise how to
hinder the agent. For instance, this requires watching and waiting
for the agent, recognising when exactly to advise or disturb, and
then recognising exactly how to correct or disturb it. Instead of
giving feedback, translating this into learning from demonstration
could mean that the human teacher simply has to carry out the
task without being concerned with how to advise or disturb. In
our work, the human teaches the agent by performing the task
alongside the agent in collaborative and competitive scenarios.

2.3 Curriculum Learning
Typically, when humans learn, easier and more digestible concepts
are presented to the learner first, before they are to encounter more
advanced examples. This technique is generally used to ensure the
learning process is as effective as possible. Likewise, this concept
has been introduced to agent learning as curriculum learning. It
has been shown in research that finding a purposeful ordering of
examples for the machine learner improves its learning process
[3, 17, 20]. One of the major issues, however, is figuring out how
best to order the examples in an effective way. For a layperson
with no knowledge of how the machine works, it can be difficult to
evaluate the complexity of samples. Without classifying learning
tasks by difficulty, [9] found that providing advisory interactions,
followed by human adversarial ones, helped to minimise errors
early on while providing exploratory learning in the later stages
for the robot. Although this provided stepping stones in regards
to curriculum learning using different interaction modes, other
combinations have not yet been explored.

3 RESEARCH QUESTIONS
Combining current research gaps in interactive agent learning, we
formulate questions to determine the advantages and disadvantages
of the two interactive teaching modes (competitive and collabora-
tive). In a game for the purpose of teaching an agent to perform a
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task, would playing collaboratively with the agent or playing com-
petitively against the agent generate better agent performance?
Would playing the game alone (i.e. solo mode) without the agent,
instead, be the most effective?

To our knowledge, there has also been no research done on
whether people would prefer to be performing tasks collaboratively
or competitively with a learning agent. It is also unclear whether
performing demonstrations while collaborating with the agent
or competing against it would feel more challenging to the user,
and whether these interaction modes would affect the human’s
perception of the agent.

Finally, one could also wonder if instead of making a binary
choice between collaborative and competitive mode, a combination
of these modes could be found beneficial for the agent’s learning.
Considering that curriculum learning has been shown to be ef-
fective in improving agent learning, it would be advantageous to
investigate the impact of ordering different interaction modes on
agent performance.

We therefore propose to explore four key research questions
focusing on: agent performance, user preference, user perception
of agent competency, and curriculum learning.

• Which mode is better for agent learning?
• What interaction mode do people prefer?
• How do different interaction modes influence people’s per-
ceptions of agent competency?

• How could using different interaction modes to construct
curricula influence agent learning?

4 EXPERIMENT
4.1 Task Design
As we wanted to compare the effects of collaboration and com-
petition on agent learning and human perception, a simple game
scenario was chosen as the task in our experiment. Using the Unity
game engine [22], we developed a simplified version of the origi-
nal Pacman computer game from 1980. In our version, the player
navigates through the 2D 7x7 maze to collect Pacdots, which are
placed around the map, while avoiding collision with the ghost
character (Figure 1). This map has been derived from UC Berkeley’s
smallGrid map [5]. Pacman gains points by colliding with (and
therefore collecting) Pacdots. One Pacdot contributes one point to
the score. Upon collision with the ghost, Pacman dies and can no
longer play. This game was chosen as the task is fairly simple and
can easily be generalised to real world non-gaming scenarios such
as objective collection and navigation. This game was also designed
to be simple enough to ensure participants could be regarded as
task experts. The small map size was to ensure that the agent could
go from having no knowledge to being able to compete against
human experts within ten games. All characters – the ghost, the
player’s Pacman, and the agent’s Pacman – had the same speed.

4.1.1 The Second Pacman. In contrast to the original Pacman game
where there is only one Pacman character, in our game, we intro-
duce another Pacman character, but in green, as our agent to play
with the human player and learn from her/him.

As the agent needs to learn by observation very quickly within
ten games, we employed behavioural cloning. We used Microsoft’s

Figure 1: The Game is a 7x7 map of walls, "Pacdots", a ghost
and Pacman characters.

LightGBM [12] framework for the decision tree construction for
agent learning. Nine features of the player’s environment were used
to build the classifier to dictate the action of the agent: whether to
move left, right, up, or down. Four of the nine features selected were
related to the following: Pacman’s distance to the closest Pacdot
1) from the position to the left, 2) from the position to the right, 3)
from the position above, and 4) from the position below. Features
5-9 were related to Pacman’s distance to the ghost: 5) from the
position to the left, 6) from the position to the right, 7) from the
position above, and 8) from the position below. Lastly, the final
feature was whether the ghost was three steps away.

These features were chosen based on UC Berkeley’s features used
in their approximate Q-learning algorithm: distance to the closest
food and the number of ghosts one step away [5]. The distance to
the closest food, or Pacdot, for each action (move left, move right,
move up and move down) was therefore included in our features
1-4. In our game, the players are humans whose reaction times can
be delayed (unlike how the player in UC Berkeley’s version is an
agent). We therefore used the distance from the ghost (features 5-8)
to help the agent determine the appropriate action, and increased
the threshold from one step to three steps (feature 9) to account for
human reaction times. Additionally, since there is only one ghost
in our version, feature 9 is simply whether the ghost is three steps
away or less.
After each game finishes, the decision tree is built based on the
accumulated demonstrations from the previous games, and is used
as a classifier for the agent’s actions in the next game.

4.1.2 Game Modes. We designed the game such that there are
three modes. As a baseline, we implemented the solo mode, in
which the user is playing as the yellow Pacman with no other
Pacman characters in the game. The player wins if all Pacdots on
the map are collected without Pacman dying. The game ends when
all Pacdots have been collected or if the player dies.

In order to compare between collaborative and competitive teach-
ing interactions, we developed:

• The collaborative mode, where the user and the agent are
playing as Pacman characters and working together as a
team. They share the same score. The team wins when all of
the 26 Pacdots are collected by either of the team members.
The game ends when all Pacdots have been collected or if
both the human and the agent are dead.
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• The competitive mode, where the user and the agent are
playing as Pacman characters but are now on different teams.
They have their own scores. The Pacman that has collected
more Pacdots by the end of the game wins, regardless of
deaths. There is a tie if both Pacman characters end up with
the same score.

As the agent has no training data to learn from in the first game in
collaborative and competitive modes, it plays Game 1 stochastically.
As more games are completed, the agent accumulates more training
data to play in the next game.

4.2 Procedure
After obtaining the participants’ consent, they were explained the
goal of the game without being told the ghost’s moves were ran-
dom. They were then asked to play ten games of the solo mode
first. This was to allow for the participants to familiarise themselves
with the game and to obtain baseline data. After the baseline, we
introduced to the participants the AI-based Pacman in green. We
used a within-subject experimental design to test the collaborative
and competitive modes. Twenty of participants were then asked to
play 10 games of the collaborative mode, followed by 10 games of
the competitive mode. The other 20 participants played 10 games of
the competitive mode before playing 10 games of the collaborative
mode. All game moves made by participants were recorded. After
the games were finished, we carried out post-task experiments:
agent learning performance, agent final performance, and curricu-
lum learning. The procedure’s timeline can be observed in Figure 2.

4.3 Participants
We recruited 40 participants (23 M, 17 F) to play our Pacman game
and fill out the questionnaire before and after playing. The age
range was between 18 and 32 (M=23.88, SD=3.69). The number
of hours participants spent playing video games per week ranged
between 0 to 50 hours (M=8.06, SD=11.03).

4.4 Questionnaire
Participants were asked to answer the questionnaire before and
after playing.
Pre-game demographic question: How many hours do you play
video games in a typical week? Along with this information, the par-
ticipant ID and the mode that each participant started (collaborative
or competitive) after playing the solo mode were recorded.

A post-game questionnaire was administrated to the participant
after the end of the experiment.

Post-game questions:

• Did you feel the AI improve from the first game?
• Which mode (collaborative or competitive) did you feel the
AI was better in?

• Which mode (collaborative or competitive) did you feel more
engaged in?

• Whichmode (collaborative or competitive) did you findmore
challenging to clear the maze?

• Which mode (collaborative or competitive) did you person-
ally prefer playing?

• Which (solo or with/against the agent) did you enjoy playing
more?1

• Did you use different strategies in the two modes (collabora-
tive and competitive)?

5 RESULTS & DISCUSSION
5.1 In-Task Agent Performance
Our results showed that during the games with the participants, the
agent obtained mean scores of 14.28 (SD=7.46) and 13.70 (SD=7.42)
in the collaborative and competitive modes respectively. The large
variances were likely due to the highly stochastic nature of the game
as the ghost’s moves were random in a small map. Although our
results do show that the mean in-task score of the agent was slightly
greater in collaborative than that in competitive, the difference was
found to be statistically non-significant (𝑝 = .21) upon conducting
the Wilcoxon signed-rank test. The agent’s rates of death were also
similar in the collaborative and competitive modes, at 48.25% (193
deaths) and 49.25% (197 deaths) respectively. Overall, the in-task
performance of the agent did not differ significantly between the
two interactive modes.

In terms of winning, the agent’s mean in-task win rate for the
competitive mode (M=48.50% SD=15.58%) was much lower than
that of the collaborative mode (M=97.75%, SD=4.74%). This was
unsurprising as it had to play against, instead of collaborating with,
the human expert.

5.2 Post-Task Agent Performance
To evaluate the agent’s learning from user demonstrations, we used
the recorded moves made by the participants during the games
to construct classifiers (using Microsoft’s LightGBM framework)
for the agent. We then allowed the agent to play in isolation. As
we wanted to examine the learning process of the agent, we docu-
mented the score of the agent with an increasing number of expert
samples used to build its classifier.

Figure 3 shows the game score of the agent with the number of
expert samples used from the solo, collaborative and competitive
modes. It can be seen that, for a given number of demonstration
samples, the agent’s performance was comparable between the solo
and competitive modes. However, learning was noticeably slower
when using the collaborative mode’s expert samples. This could
be due to the missing context derived from when the participants
were playing as a team with the agent. The players could have
intentionally allowed for the agent to contribute to the team score.
In contrast, in the competitive mode, the players were each playing
for themselves rather than accommodating for another Pacman,
and hence there was less context missing. The participants would
have been attempting to make optimal moves at any point in time.

Next, we examined the final agent performance using the full
game samples. We allowed for the agent to play the game in each of
the three modes 100 rounds each, using each participant’s samples.
The mean agent score was the lowest at 21.96 (SD=3.40) for the
collaborative mode, while the mean scores for the solo and compet-
itive modes were similar to each other at 23.21 (SD=2.04) and 23.05
(SD=2.67) respectively. We performed Wilcoxon signed-rank tests

1this question was added after 19 participants had already undertaken the experiment.
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Figure 2: The experimental procedure timeline

between pairs of the three modes and found 𝑝 = .24 between the
collaborative and competitive modes, 𝑝 = .36 between the solo and
collaborative modes, and 𝑝 = .91 between the solo and competitive
modes. These results reveal that the score differences between the
modes are non-significant. It is also important to note that the mean
number of expert samples in one solo match is 41.77 (SD=5.90) and
the mean numbers of expert samples in a collaborative match and
a competitive match are 33.17 (SD=6.55) and 31.79 (SD=6.57) re-
spectively (Figure 4). From conducting Wilcoxon signed-rank tests,
we discovered that there were significant differences between the
numbers of samples in a solo game and a collaborative or com-
petitive game (𝑝 < .001) and no significant difference between
the collaborative and competitive modes (𝑝 = .30). The number of
moves required to finish a game in the collaborative and compet-
itive modes were respectively on average 20.59% and 23.88% less
than the number of moves required for a solo game. Even with
smaller numbers of samples, demonstrations from the interactive
modes still allowed for the agent to perform comparably to the solo
mode’s samples with no significant differences.

Figure 3: Post-task agent’s performance from learning from
expert samples from the solo, collaborative and competitive
modes.

We examined to see if there would be a correlation between
the post-task performance of agents using a specific participant’s
samples and the number of hours the participant spends each week

Figure 4: Mean numbers of player moves executed in one
game.

on gaming. For each of the 40 participants, and for each mode, the
participant’s moves were used to build a classifier for the agent to
play the game in isolation. The procedure was repeated 100 times
for each mode and for each participant. We found that there was
little to no correlation between the resulting agent’s performance
and the number of gaming hours upon examining the Pearson
correlation coefficients (solo mode: 𝑟 = .08, 𝑝 = .63, collaborative
mode: 𝑟 = −.03, 𝑝 = .87, competitive mode: 𝑟 = −.03, 𝑝 = .87).
The lack of correlation could be due to the task being so simple
that the amount of gaming the user regularly does had little to no
effect. This was intended as we wanted the players to be deemed
as experts at the task.

5.3 Curriculum Learning
In this section, we examine the effects of combining different modes
of the game as curricula for the agent’s learning. To investigate this,
we created six different learning curricula for the agent where the
first half of the samples were from one mode and the second half
from another. The combinations we chose were: 1) collaborative-
solo, 2) competitive-solo, 3) solo-competitive, 4) solo-collaborative,
5) collaborative-competitive, and 6) competitive-collaborative. As
we wanted to compare these curricula to the solo mode, the total
number of samples used for each curriculum was the same as the
number of solo samples for that particular participant.
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We plotted the learning performance of the agent using these
six curricula, using a moving average of 5500 samples in Figure 5.
All of the curricula, except ones starting with the collaborative
mode samples, had similar learning rates as that of the solo mode
samples. From the moving average graph, it can be observed that
the scores of all mixed curricula but two were converging towards
slightly higher scores than the pure solo mode curriculum. The two
curricula which did not converge towards as high scores were the
collaborative-competitive and competitive-collaborative curricula.
Interestingly, these were the ones without solo mode samples. Their
mean final scores were also the lowest compared to the other mixed
curricula.

Figure 5: The Pacman agent’s learning performance using
different curricula

Apart from the collaborative-competitive curriculum, all of the
mean scores obtained from using curriculum learning were higher
than the mean score of samples from the solo mode only (Table 1).
In general, however, there was no statistical significant difference
among the curricula. The only statistically significant difference
was between the collaborative-competitive and solo-competitive
curricula (𝑝=.038) which had the highest and lowest mean agent
scores respectively.

These results from curriculum learning did not show much sig-
nificant difference. This may be due to the fact that the ordering
of the samples was not based on the difficulty level of the task.
In the three game modes, the task complexity level remained the
same. Hence, this method of sample sequencing by game modes
was ineffective.

5.4 User Perception of Agent Improvement and
Performance

During our experiment, the mean number of Pacdots the agent
collected in Game 1 was 3.18 and 2.90 for the collaborative and
competitive modes (SD=2.41 and SD=2.13 respectively). The agent’s
mean number of Pacdots collected was increased to 14.88 and 14.58
for the collaborative and competitive modes respectively by the
end of Game 10 (SD=6.63 and SD=6.97). Although it is clear that the
performance of the agent improved from Game 1 in both modes,
the answers from the questionnaire did not reflect this. Only 10

Table 1: Final Agent Scores from Different Curricula

Curriculum Final Agent Score
Mean Standard Deviation

Solo 23.21 2.04
Collab-Solo 23.43 1.50
Compet-Solo 23.65 1.11
Solo-Compet 23.71 1.16
Solo-Collab 23.55 1.32

Collab-Compet 23.20 1.60
Compet-Collab 23.24 1.70

(25%) of the participants felt the agent improved in both modes.
Fifteen (37.5%) of the participants felt the agent only improved in
the competitive mode, eight (20%) felt the agent only improved
in the collaborative mode and the rest (seven, or 17.5%) of the
participants reported that they did not feel the agent improve from
the first game in either of the modes. During the questionnaire,
some participants voiced that they had not been paying attention to
how well the agent was performing in the first games. The players
were more focused on their own performance than the agent’s.
It was also to be expected that the participants would be more
aware of the opponent’s performance during the first game of the
competitive mode since the participant was having to compete
against the agent. Hence, a sizeable portion of the participants felt
the agent had improved in the competitive mode. On the other
hand, some may have noticed the improvement of the agent during
the collaborative mode more as the agent was directly affecting
the player’s score and was being a ‘deadweight’ during the first
game. Some of the participants would voice frustration with the
collaborative agent’s performance.

As for the comparison of the agent’s performance between the
two modes, the average numbers of Pacdots collected by the agent
were 14.28 (SD=7.46) and 13.70 (SD=7.42) for the collaborative and
competitive modes respectively. Interestingly, however, 32 (80%)
of the participants felt that the agent was better in the competi-
tive mode than the collaborative mode. Although the mean scores
and death rates of the agent between the two interactive modes
were very similar (with the collaborative score even being slightly
higher than the competitive one, and the collaborative death rate
being slightly lower than the competitive one), the overwhelming
majority of the participants felt that the agent was better in the
competitive mode. This could have been due to the fact that players
were more likely to view the agent’s competency as higher when
the agent was actively being adversarial towards them.

5.5 User Engagement and Preference
The majority of the participants (33 out of 40) reported that they
felt more engaged in the competitive mode than the collaborative
mode. 76.2% of the participants said they preferred playing collabo-
ratively/competitively over playing the solo mode. It is apparent
that users find it more engaging playing with an opponent as op-
posed to playing alone. These results may help to suggest that in
the tedious tasks of the teacher having to perform demonstrations
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for an agent learner, it may benefit the teacher to perform these
demonstrations while interacting with the student competitively.

In terms of user preference between the two interactive modes,
72.5% of the participants preferred playing competitively while just
over a quarter (27.5%) preferred playing collaboratively. We discov-
ered that the overwhelming majority of the players (92.5%) found
the competitive mode more challenging; however, the majority also
reported that they preferred playing this mode. This would suggest
that the participants enjoy more challenging tasks when interacting
with an agent. Although it is clear that at this level of difficulty
people tend to prefer the challenge, it would be advantageous to,
in the future, investigate the level of difficulty at which this would
no longer hold true.

Some of the participants reported that they preferred a no-stress
environment, and hence they preferred the collaborative mode. This
would be another factor that should be taken into consideration
when designing a platform for human teaching.

5.6 User Behaviour
From our experiment, we found that the death rates of the human
players were 4.25%, 4.75% and 11.25% for the solo, collaborative
and competitive modes respectively (Table 2). The death rate in the
competitive mode more than doubled those of the other modes. This
may have been due to the players’ higher likelihood of making risky
plays in order to have a higher score than the agent. Additionally,
it could also have been due to participants not caring as much
once they had defeated the agent. In any case, the fact that agent
performance from competitive samples was found to be comparable
to using the solo mode’s samples despite the higher rate of deaths
should be considered.

As one of the features used for classifying the action for the
Pacman agent was whether or not the ghost was within three
steps from the agent, we used this feature as a way to measure the
percentage of "risky moves". We defined the percentage of risky
moves as the proportion of the states that the agent waswithin three
steps away from the ghost. Using the Pearson correlation coefficient,
there is a positive correlation between the percentage of riskymoves
and the final agent performance in the solo mode (𝑟 = .59, 𝑝 < .001)
and the competitive mode (𝑟 = .34, 𝑝 = .034). However, there is a
weak negative correlation with a non-significant relationship in the
collaborative mode (𝑟 = −.18, 𝑝 = .26). This could be explained by
the fact that in the solo and competitive modes, players would take
risks in an attempt to play optimally. However, in the collaborative
mode, since the agent would generally be making moves that were
good, in order to simply assist the agent in collecting points, the
player would be making risky sub-optimal moves.

For each of the three modes, we divided the participants into
two groups: risk-averse and risk-seeking (Figure 6), based on their
risky move rates. This was done using K-Means clustering. We then
calculated the mean agent performance for each group. It can be
observed in Figure 7, that for solo and competitive samples, risk-
seeking individuals generated better agent performance (M=24.73
SD=3.33 and M=23.91 SD=4.48 respectively) when compared with
risk-averse participants (M=22.11 SD=5.78 and M=22.47 SD=6.03
respectively). However, this was not the case for the collaborative
mode. This shows that although risk-taking moves informed the

agent what to do when in undesirable situations, not all risk-taking
moves were of the same usefulness. Risks performed in competi-
tion or isolation could be more valuable for learning that those in
collaboration.

Although our results indicate that having a higher percentage
of moves where the player is within three steps of the ghost pro-
duces better agent performance for two game types, we did not
investigate to what extent risk-taking would continue to be benefi-
cial. Moreover, in terms of risks, we did not investigate the length
of time the player spent near the ghost or how risks varied with
the distance from the ghost. The number of steps being three to
constitute a feature was chosen somewhat arbitrarily - it is a small
number, yet accounts for some reaction time.

The rates of risky moves made in the three modes can be ob-
served in Table 2. The percentage of risky moves was highest in the
competitive mode, as expected, and lowest in the solo mode. During
the collaborative mode, participants would intentionally approach
closer to the ghost as they saw that the agent was already playing
safely, and hence they would collect the Pacdots in riskier locations.
The same can be said for the competitive mode. Players were more
likely to get closer to the ghost as their aim was to collect more
objectives than the agent. On the other hand, in the solo mode,
players were less likely to be making risks since they did not feel a
sense of competition and did not have anyone to help.

We definemaze completion rate as the percentage of games where
all the objectives in the map had been collected by either the player
or the agent. As expected, the completion rate was the highest in
the collaborative mode as the two Pacman characters could help
each other in collecting all the Pacdots. Interestingly, the maze
completion rate was the lowest in the competitive mode despite
there being two Pacman characters. This could have resulted from
players making riskier plays in the competitive mode and dying a
lot more.

6 CONCLUSION
In this paper, we examined how demonstration samples from dif-
ferent interaction modes affect agent performance and human per-
ception, such as user preferences and behaviours. We also looked
at the impact of mixing task modes to provide learning curricula
for the agent.

We found that despite the smaller numbers of demonstration
samples in the interactive modes, these generated comparable per-
formance to those in the solo mode. The learning speeds of the
agent in the solo and competitive modes were observed to be very
similar. In addition, the participants reported that they preferred
playing with/against an agent compared to playing alone. Out of the
three modes, the participants liked playing competitively the most.
The agent was also perceived to be better in this mode than the col-
laborative mode, despite the marginally worse in-task mean score
and death rate. Our results show that the participants’ perceived
agent competency and improvement was inaccurate due to the
influence of the human-agent interaction type. This could suggest
that there should be additional work to improve the indication of
agent performance to the user. Higher agent perceived competency
can potentially induce higher user trust and therefore acceptance.
Learning from demonstration procedures may therefore benefit
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Table 2: Player Behaviour and Maze Completion Rate in Different Game Modes

Game Mode Player Death Rate Risky Move Rate Maze Completion Rate

Solo 4.25% 8.28% 96.00%
Collaborative 4.75% 11.41% 97.75%
Competitive 11.25% 12.94% 94.50%

Figure 6: Score distribution between risk-averse and rise-
seeking participants in a) solo mode, b) collaborative mode,
and c) competitive mode

from implementing interactive modes, particularly competitive, in
order to improve the teaching experience.

In terms of curriculum learning, we investigated how the order-
ing of the different modes would influence agent learning. Learn-
ing from demonstration in the collaborative mode early on in the
curriculum could be observed to be noticeably slower than the
other two modes due to the differences in the strategies used. We
also found that there was only statistical significant difference
between two mixed curricula (Solo-Competitive and Collaborative-
Competitive). We concluded that building a curriculum through
different modes only is ineffective as all three modes have the same
level of task complexity. Our work also did not examine on the
effects of sample proportions as we split the samples into two equal
sized groups.

Figure 7: Mean agent scores from risk-averse and risk-
seeking participants’ samples

We found that the rate of risks made by the demonstrator in
the solo and competitive modes improved the agent performance
with statistical significance, while this was not the case for the
collaborative mode. This is indicative that risks made in isolation
or competition were more useful than those in collaboration for
agent learning. Depending on the interaction type, the amount and
type of risks to be taken in the demonstrations may need to be
considered.

Although the task in this experiment was collecting objectives in
a computer game, the knowledge from this work can be transferred
to other non-gaming tasks such as physical objective collection or
navigation as the mechanics are very similar. Human adversary
could potentially be a suitable method for agent training, consid-
ering its positive influence on agent performance and the human
perspective. Our work indicates that more research into different
teaching interaction styles should be undertaken. The addition of
competitive interactions could potentially be a way to improve the
process for both the human and the agent.
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