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a b s t r a c t

The difficulty in maintaining attention can interfere with the acquisition of critical academic skills.
Recently, researchers have used embodied and game-based learning to support skill acquisition
for children with learning difficulties. In this context, robots can be an interesting asset to foster
engagement and investigate game dynamics. However, it is still an open question of how to develop
adaptive learning environments for children with learning difficulties. Before one can provide effective
adaptation, a first step is needed to understand the differentiating behaviors during the activity
for children with attention difficulties. Three such differentiating behaviors are how a child divides
his or her attention during the learning activity, the child’s level of cognitive load, and the child’s
physiological fatigue, which are the focus of our study Using a robot assisted, gamified activity, we
conducted a user study with 18 children having difficulty in maintaining attention. Using process
mining techniques and eye-tracking data, we found the importance of integrating the autonomous
robots into the attention patterns to successfully complete a game and the influence their behaviors can
have on the participant’s attention. This importance was supported by the cognitive load of participants
decreasing the more they focused on the autonomous robots in successful games. This work contributes
to the understanding of children’s behaviors during tangible game-based activities and can be used to
build effective adaptation for children with attention difficulties.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The difficulty in maintaining attention can interfere with the
cquisition of critical academic skills that might affect long-
erm achievement even though the attention problems diminish
ver time (Rabiner, Carrig, & Dodge, 2016). Students with learn-
ng difficulties, such as attention deficit hyperactivity disorder
ADHD), may have difficulty with their working memory, flex-
bility, time-management, motor-planning and self-control, and
rganization (Fabiano et al., 2009). Historically, children with
ttention difficulties typically join extracurricular activities or
ccupational therapy sessions, including several visio-motor ex-
rcise activities, to improve attention as well as to improve
oordinated visual and motor skills. A more recent trend in
esearch has focused on the use of embodied and game-based
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learning to support skill acquisition for children with learning
difficulties (Boccanfuso et al., 2016). In this paper, we combine
embodied and game-based learning in a tangible, robotic Pacman
game to support children with learning difficulties in practicing
attention and motor skills. Particularly, we are interested in the
attention and cognitive behaviors that the children exhibit while
engaged in this activity and can be captured through eye tracking.
This work provides insights that can be used to inform the
development of more adaptive support in future systems.

Across learning paradigms, adaptation is often key to provid-
ing the right support at the right time. Particularly, personalizing
play activities to children’s preferences (Boccanfuso et al., 2016)
or game difficulties (Schadenberg, Neerincx, Cnossen, & Looije,
2017) is an efficient way to keep users engaged when playing
with a robot. Activities should not just adapt over time but should
be adjustable to the child’s abilities and problem task (de Greef,
Van der Spek, & Bekker, 2013). However, to provide effective
adaptation, a first step is needed to understand the differentiating
behaviors during the activity to understand what occurs during

the game play and where the opportunities are for adaptation.
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In this study, 18 children with a range of attention related
ifficulties worked with a low cost, easy to use, gamified robot
ssisted tangible Pacman activity to support attention and visio-
otor integration. In other words, the children played a physical
acman game in which both the two ghosts and one Pacman were
obots on a paper map. The children had to control the Pacman to
ollect six apples across the map without getting caught by the
hosts or they had to start the game-play over. To understand
he children’s attention and cognitive patterns, we collected eye-
racking data as the children engaged with the robot-enhanced
ame. Using this eye-tracking data, we investigated three re-
earch questions to better understand how the children were
ngaging with the system. First, (R1) how do the participants’
rocesses, as indicated by their gaze fixation patterns, change
etween unsuccessful and successful games (game success)
nd easy and hard games (game difficulty)? Particularly, we
re interested in how the participants’ attention to the robots fit
nto their game-play process and how the robot ghosts’ speeds
nfluenced these attention measures. Second, (R2) how does a
articipant’s cognitive load correlate with game success and
ame difficulty, and (R3) how does a participant’s physiolog-
cal fatigue correlate with game success and game difficulty?
ur work contributes to the understanding of the role attention
lays in educational robotics games and how changes in robot
ehaviors can influence the learning process as captured through
ye-tracking patterns. We believe that investigating the attention
owards game components and exploring the relationship be-
ween gaze behavior and game performance lead us to implement
ore sophisticated and adaptive games that can account for
ehaviors of children with learning disabilities rather than only
upporting neuro-typical children.

. Related work

.1. Embodied, game-based learning

Embodied cognition highlights the usefulness of the connec-
ion between body and mind, and its relation with surround-
ng environment while learning and/or problem solving (Wilson,
002). The embodied learning theory is based on the idea that
rain and body have an inseparable link that supports them in
orking together (McClelland, Pitt, & Stein, 2015). In this way,
he physical body can play a role in the cognitive process.

Embodied learning has had positive impacts on children’s
hort-term memory skills and emotional stages (Kosmas, Ioan-
ou, & Retalis, 2018) as well as improvements to children’s motor
erformance (Kosmas, Ioannou, & Retalis, 2017). Previous litera-
ure has shown considerable confidence in the tools developed
ased on the design principles of embodied learning (Hsu, 2011).
urthermore, it has been shown that the children with special
ducational needs and their family members/teachers/caregivers/
herapists consider such tools beneficial for learning (Bartoli,
arzotto, Gelsomini, Oliveto, & Valoriani, 2014; Edwards, Jeffrey,
ay, Rinehart, & Barnett, 2017; Kourakli et al., 2017; Malinverni,
ora, Padillo, Hervas, & Pares, 2014) and consider such interven-

ions as possible options for classroom integration (Kourakli et al.,
017).
Researchers often have combined these embodied learning

nterventions with game-based elements. Qian and Clark (2016)
ound that game-based learning approaches may be effective in
elping students develop their 21st century skills. By providing an
ngaging environment, children can improve their attention skills
uring a game-based activity (Cassar & Jang, 2010). Furthermore,
hese types of activities can improve memory, concentration,
otor planning and time management skills (Frutos-Pascual, Za-
irain, & Zorrilla, 2014). Many embodied games are developed
2

using Kinect and Wii technology (Kosmas et al., 2017, 2018), but
robots can also be an interesting asset to foster engagement and
investigate game dynamics. For example, Boccanfuso et al. (2016)
presented a study in which children with or without Autism
Spectrum Disorder (ASD) played with a Sphero robot. The child–
robot interaction patterns were analyzed and revealed specific
patterns discriminating children with ASD from others. Through
the use of robots, a child can still engage in a tangible activity
through the control of a robot while also having the possibility of
extending the game space using autonomous robots with which
the child can interact. Although, as discussed above, these embod-
ied learning interventions have supported children with a range
of needs, the adaptation of the system to support this variability
of needs is lacking in the literature. In this work, we investigate
how gaze patterns and robotics log could be use to distinguish
patterns that could be then integrated into an adaptive system.

2.2. Robot-assisted motor learning

Motor skills deal with both movements and cognitive pro-
cesses allowing motion of body parts in space. While gross motor
skills involve large body muscles and pertain to balance orienta-
tion of movement of trunk, limbs and posture, fine motor skills
involved coordination of small muscles for tasks like drawing
or writing (Cameron, Cottone, Murrah, & Grissmer, 2016). Gross
motor skills are a critical part of children’s developing social
competencies and physical well-being and are a gateway to en-
gagement in learning and social activities, including sports and
games, throughout the school years (Pagani & Messier, 2012;
Wilson, Piek, & Kane, 2013).

Cameron et al. (2016) highlighted three cognitive processes
that are usually targeted when evaluating motor skills: (1) Motor
Coordination, (2) Executive Function and (3) Visuospatial Skills.
Motor Coordination involves motor planning and spatial se-
quencing. Executive Function is defined by a set of cognitive
processes that helps children focus and shift their attention, ma-
nipulate information in working memory, and inhibit maladap-
tive responses to meet adaptive goals (Cameron et al., 2016).
When performing motor actions, children must maintain their
attention to the task, whether sorting manipulatives or organizing
learning materials. Visuospatial Skills involve perceiving spatial
relations, visualizing objects using cognitive representations in
2D or 3D space, and manipulating those representations.

Among technologies used to help motor and attention learn-
ing, we found that robots have been of interest in the past few
years. Through their abilities to easily perform the same se-
quences of actions over and over, robots are particularly suitable
for repetitive training. For example, several studies have used
social robots to play imitation games with participants (Guneysu,
Siyli, & Salah, 2014; Malik, Yussof, & Hanapiah, 2014; Matarić,
Eriksson, Feil-Seifer, & Winstein, 2007). Some other studies used
tabletop robots such as Guneysu Ozgur et al. (2020), who pro-
posed the design of a robot-assisted handwriting activity for
children with handwriting difficulties. In the same handwriting
context, Lemaignan et al. (2016) showed how a social robot could
engage children for long training periods.

A crucial point mentioned by the authors of these studies is
the adaptation of the task difficulties to the skills of the partici-
pants. This adaptation, just like in any game, needs to be accurate
in order to keep the user challenged but not frustrated (Yan-
nakakis & Hallam, 2009). In previous social robots for learning
studies, authors have proposed to estimate the child’s engage-
ment in the task using attention tracking (Johal, Jacq, Paiva,
& Dillenbourg, 2016; Lemaignan, Garcia, Jacq and Dillenbourg,
2016). However, eye-tracking data could also be used to esti-
mate other interesting metrics for adaptation in robot-mediated
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training for example, attention distribution (Chen, Wang, Peng,
Yan, & Pan, 2019; Gallagher & Byrne, 2013; Palinko, Rea, Sandini,
& Sciutti, 2016), joint attention (Bekele, Crittendon, Swanson,
Sarkar, & Warren, 2014) and target selection performance (Bekele
et al., 2013).

2.3. Assessing attention using eye-tracking

Previous research has shown the effectiveness of eye-tracking
n differentiating expertise levels, problem difficulty and task-
ased performance. For example, gaze behaviors can indicate
hen participants are unable to solve problems providing in-
ights into the problem-solving process (Knoblich, Ohlsson, &
aney, 2001). Moreover, researchers have found gaze patterns can
e used to differentiate expert and novice problem solvers across
omains (Grant & Spivey, 2003; Reingold, Charness, Pomplun,
Stampe, 2001; Thomas & Lleras, 2007). Many of these stud-

es have focused on differentiating between what expert/high-
erformers and novices/low-performers look at and for how long.
his same type of analysis has been used during game play to
ifferentiate between players by analyzing their length of fixa-
ions (Frutos-Pascual & Garcia-Zapirain, 2015; Renshaw, Stevens,
Denton, 2009). However, in many learning tasks, including

hose involving educational robots, it is as important to consider
emporal aspects of these gaze patterns as we do in this paper.
o better understand the problem-solving process, we can assess
ow participants transition between these different gaze events.
n addition to assessing gaze patterns to investigate attention,
ognitive load, which can be computed through pupillary activity
athered from eye-tracking, can be used to gauge the mental
ffort related to a problem. Mental effort becomes important
hen we consider task difficulty as tasks that do not take much
ffort may lead to participants losing focus. Previous work has
hown that gaze-based indicators of the cognitive load success-
ully differentiate the different difficulty levels of the respective
asks (Harbluk, Noy, Trbovich, & Eizenman, 2007; Kaller, Rahm,
olkenius, & Unterrainer, 2009). By understanding the amount of
ffort that a participant is exerting, we can better understand how
hey are perceiving the robotic environment.

As can be seen through the relationship between difficulty and
ognitive load, differences do not just occur between participants,
ut the gaze patterns can be manipulated through adaptations
n the system. For example, adaptive hints given during educa-
ional games not only increase the performance of the students
ut also the degree to which the players pay attention to the
ints (Conati, Jaques, & Muir, 2013). Similarly, researchers have
sed interactive eye tracking to develop initial prototypes of
utomated tools which could help young children (toddlers and
re-teen) with atypical visual attention to not only attend to
ocial information in a more typical manner, but also to inter-
alize it (Wang et al., 2015). Furthermore, eyetracking has also
een used as an input modality in the games for behavioral
herapy (Al-Shathri, Al-Wabil, & Al-Ohali, 2013). When robots
re used to support learning, adaptation is a key factor and it
s important to understand how the changes in robot behavior
nfluence the participant’s attention.

. Robotics system overview

.1. Robotic platform

Our study was designed using the Cellulo robotic platform
Ozgur̈, 2018). The Cellulo robotic platform is composed of small-
ized, graspable and haptic-enabled robots, paper sheets as a
ame space, and a controller application run on a tablet, a com-
uter, or an android phone. The paper sheets include both visual
3

information for the participant and the Cellulo robot. The paper
sheet has a visual design of the workspace/gamespace within
which the participant interacts. Furthermore, the sheets contain
a small dot pattern that allows the Cellulo robots to operate on
these printed papers and to localize themselves with sub-mm
accuracy (Hostettler, Ozgur̈, Lemaignan, Dillenbourg, & Mondada,
2016). This accurate localization allows one to monitor the user’s
motion through the robot being held.

The robots can be used as an interface for interacting with
many virtual point-like objects that reside on this 2D plane
(Ozgur̈, 2018). The original design objective of the Cellulo robotic
platform is to provide a practical, easy to use and intuitive
interface for ranging human–robot interaction scenarios within
home and school environments. Researchers have used them as
a passive, semi-passive or active agents within educational (Neto
et al., 2020) and therapeutic activities (Guneysu Ozgurm, Özgür
et al., 2020; Guneysu Ozgur, Wessel et al., 2020) in schools,
occupational therapy centers, home environments, and hospitals.

3.2. Tangible pacman game

In this study, our participants engaged with a tangible Pacman
game designed to support motor learning (Guneysu Ozgur et al.,
2018). The tangible Pacman game was iteratively designed with
patients in various therapy centers. It was tested with healthy
children as well as children having some physical or visio-motor
coordination issues (Guneysu Ozgur et al., 2018). The game con-
sists of three Cellulo robots including one called Pacman, which
is a robot that is manipulated by the player to collect six target
apples on a printed paper maze (see Fig. 1. The other two robots
are called ghosts and are autonomously chasing the Pacman
robot using a shortest path algorithm. If an autonomous ghost
robot catches the Pacman robot, the player looses all previously
collected apples and the game restarts. An increase in the speed of
the ghosts increases the game difficulty. The game also consists of
a penalty rule where if the player crashes into a wall of the maze,
the last eaten apple is lost as a penalty of that crash. The goal
of the game is to collect the all apples as soon as possible while
running away from the ghosts and not crashing into the walls. The
game ends when the player collects all of the apples. Therefore,
for a successful game play, the player has to be attentive to
the ghosts’ positions, target positions, and where the Pacman is
relative to the walls. In this study, an unsuccessful game is when
the Pacman gets caught by a ghost while a successful game is
when the player collects all six targets.

In this study, all game parameters remained constant across
the games except for the speed of the ghost robots. As the speed
of the ghost robots increased, the game became more difficult
because the participant had to move faster while still maintaining
accuracy on the paths to balance not getting caught and not
crashing into a wall. As a threshold, easy games were those with a
speed under 100 mm/s and hard games were those with a speed
over 100 mm/s. A single maze (980 mm × 420 mm) was used
for the Pacman game (Fig. 1). An easy game has the speed of the
ghosts set to either 50/60 mm/s or 80 mm/s and a hard game
has the speed set to 120 mm/s or 160 mm/s. Further, all games
had two ghosts chasing the Pacman. Finally, the Pacman robot
provided haptic informative feedback towards the middle of the
path when the participant crashed into a wall and they lost an
apple. The haptic feedback provided was a short vibration of the
robot.

The Pacman game demands visual attention, and the physical
motion that takes place during the game play requires visio-
motor coordination. Due to the nature of the game, therapists
and teachers suggested to use the game as a visio-motor coor-
dination exercise to improve attention as well as visual motor
integration. Visual motor integration is the task of interpreting
visual information and responding with a motor action (Beery,
2004).
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Fig. 1. (A) Experimental set up from the front view through the camera on the table, a participant plays the game on the map while wearing mobile eye trackers. (B)
Experimental set up from the back view with a camera facing towards the participant, the participant wears an eye tracker while playing the game by manipulating
the Pacman robot in order to collect the apple targets and autonomous ghost robots chase the Pacman (user’s robot).
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4. Methods

4.1. Participants and experimental design

In our study, 18 children participated. We recruited children
–11 years old through a partnering school in Switzerland. We
ot the appropriate ethical approval for the study from Ecole
olytechnique Federale de Lausanne, Switzerland. We also got
onsent from the school’s principal and teachers. Parents and
hildren gave written informed consent prior to the study. All
hildren were given the option of withdrawing from the activity
t any time and were explicitly asked after each game if they
anted to continue. All students were exposed to the same
ame-play configurations. All of our participants had difficulty
n maintaining attention and concentration. As is common with
ttention and concentration difficulties, some children also had
range of other difficulties such as ADHD, Asperger syndrome,
oor emotion control, poor anger management, poor working
emory or language difficulties. With this range of difficulties, no
ne child had the same set of difficulties as another, preventing
roupings. Rather, we considered all the children to have atten-
ion and concentration difficulties with other difficulties being
ndividual differences that allowed us to test the robustness of
ur analysis across a heterogeneous population. Given the hetero-
eneity of the population, as a first analysis, we aimed to observe
rends within the group. In other words, our goal was not to find
ow these children are different than a control group. Instead,
e wanted to investigate the behavioral patterns of children
ith attention and concentration difficulties regardless of other
ifficulties that they may have.
For our study, all participants engaged in the same study

esign. Before the game play, the game and rules were explained
o the participants. No further training was done beyond this
xplanation. The participants were then asked if they wanted to
lay the game. At this point, if any child said no, they were ex-
luded from the study. Otherwise, the participant was equipped
ith mobile eye-tracking glasses that were calibrated before the
ame play. After the calibration, the participant began playing the
ame. After the completion of a game, a new game was started
nless the participant did not want to continue. Each participant
ompleted a different number of games (M: 3.88,SD: 0.86) as each
ame was a variable length of time depending on how long it took
he child to collect all of the apples and each session was the same
ength.

Before each new game, the participant was asked if they
anted the ghosts to move faster or to go at the same speed
s a motivational technique to give them agency over the game
lay. The ghosts started at a speed of 50 or 60 mm/s. The speed
ncreases then moved to 80, 120, and 160 mm/s. The participants
ere not able to reduce the speed of the ghost robots after they

oved to a faster speed. All of the participants wanted a higher h

4

speed after the initial game except one who instead increased the
speed after the second game. At the end of the second game, all
participants increased the speed as well. Although the students
may have chosen a faster speed, pushing the game beyond their
limits, we did not see this in the data where any of the students
could not complete the game at a given speed. The minimum
number of games played by a child is 2 and the maximum number
of games played by a child is. The mean duration of the games
was 22.95 s (SD = 9.16 s).

.2. Data collection

We collected the eye-tracking data through SMI eye-tracking
lasses with a sample rate of 120 Hz. Despite the difficulty of
sing eye trackers with children, the tracking accuracy ratios for
ll of our participants fell between 87.9 and 100%, meaning we
ad very little loss of data during our collection. However, one
articipant was removed from analysis due to the eye tracker
ot fitting correctly and data not being collected for this partic-
pant. From the eye-tracking data, we were able to extract gaze
ehaviors, cognitive load, and physiological fatigue, which we will
iscuss in more detail in the next section.
In addition to eye-tracking data, data was collected from the

ellulo robot. Specifically, logs collected the start and end time
f each game, if the game ended unsuccessfully, and the location
f the Pacman robot, x(mm) and y(mm), during the game. The
ellulo robot recorded its position at 93 Hz. Additionally, for each
ame, we recorded the configuration of the game. We labeled
ames set to 50, 60 or 80 as easy and all other games as difficult.
ny portion of a game that ended in the Pacman robot getting
aught, we labeled as unsuccessful, and any game that ended
hen all fix targets were reached, we labeled as successful.

.3. Computing eye-tracking measurements

Fixations, Saccades, and Areas of Interest When we consider
aze patterns, there are two types of actions in which a per-
on can be engaged. When a person pauses and focuses on an
tem in the environment, we consider that a fixation (Salvucci
Goldberg, 2000). On the other hand, the rapid movement that
ccurs between these fixations are known as saccades. In terms of
ttention, people look towards and fixate on the object that they
re attending to or trying to gain more information about. In this
ase, we can consider the area that a person is fixated on to be an
rea that they are attending to with changes in fixations occurring
uring periods of measured saccades. In this work, we measured
oments of fixations and saccades using the algorithms within

he SMI BeGaze software (Instruments, 2015).
For the fixations, we were not only interested in whether

ur participants were attending to an area of the game and for

ow long, but we were interested in what component of that
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Fig. 2. (A) The Pacman map used in the game with 6 targets (apples) and the visuals indicating initial positions of Pacman and Ghost robots at the game start. (B)
BeGaze software used for annotation of gaze data, on the left side, areas of interest on the map can be indicated manually while observing the current eye gaze
from the video frame on the right side. In the bottom part the annotator can select the current frame of the video.
game that might be. Specifically, given the game design, we were
interested when the participants were attending to their own
Pacman robot, the ghost robots, or a target. These components
are known as Areas of Interest (AOIs) for our activity design.
For each period of fixation, we used the BeGaze software to
label the fixation period as Ghost, Target or Pacman, aligning
with what the participant was fixated on (see Fig. 2). All other
areas were considered Other. All of these labels were completed
by a human coder with all of the labels reviewed by a second
coder. If disagreement was found, the label was discussed to find
agreement. As components of the game moved throughout the
game play the AOIs for the Pacman and ghosts moved throughout
the board. Given the length of the average fixation and the speed
at which the robots moved, this did not impact the classification
of a fixation and a saccade. From BeGaze, we were able to export
the data at the fixation and saccade level with the associated
labels.

Cognitive load Cognitive load is related to the mental effort
invested to solve a given problem. We can compute eye-tracking
cognitive load as a function of the pupillary activity (Duchowski
et al., 2018). There exist other methods of assessing cognitive load
from participants. Methods like post-hoc self-reports of cognitive
load (Kaiser et al., 2016; Paas, Tuovinen, Tabbers, & Van Ger-
ven, 2003) and NASA task load index (NASA-TLX) (Hart & Stave-
land, 1988) have an innate limitation of not occurring in real-
time (Prieto, Sharma, Kidzinski, & Dillenbourg, 2017). Below we
provide the steps for computing cognitive load for each game. The
complete details can be found in Duchowski et al. (2018).

1. Compute the 2-level Discrete Wavelet Transform (DWT) of
the pupil diameter using the symlet-16 wavelets.1

2. Normalize the second-level detail output of the DWT.
3. Detect the local maxima for each 3-tuple of points.
4. Threshold the series of maxima using the standard deviation

f the noise in the signal after removing the maxima.
5. Count the non-zero points and divide by the duration of the

ame.
Physiological fatigue Physiological fatigue is related to the

physical tiredness of the participant. It is computed as the number
of blinks per second. The higher the blink frequency is, the higher
the fatigue (Schleicher, Galley, Briest, & Galley, 2008; Stern, Boyer,
& Schroeder, 1994). The default algorithm from SMI ETG was used
to detect the blinks that is based on the difference of the images
as shown in Fig. 3. It is a temporal algorithm that used following
three steps: (1) detect the eye in the image (this step is highly
accurate because the camera is very close to the eye, on the frame
of the ETG); (2) find the white part of the eye; (3) determine if
the white part of the eyes has an area less than a threshold for a
certain duration (blink duration).

1 This is a standard wavelet form that is implemented as one of the basic
ptions in both Python and Matlab signal processing libraries/toolboxes.
5

Fig. 3. Top left: opened eye, top right: closed eye, bottom left: difference image,
bottom right: thresholded difference image.

4.4. Analysis techniques to assess attention differences

As with human-to-human interactions, when interacting with
robots, it is not just about where your attention lies but the
pattern of events. To capture the attention behaviors of the par-
ticipants as they engaged with the robotics system, we applied a
methodology known as process mining to our fixation data.

Process mining is a temporal analysis technique that builds
on the notion of a process model (Bannert, Reimann, & Sonnen-
berg, 2014). Process models capture the sequences of events and
how they follow one another to generate a process (Reimann,
2009). Process mining is a type of data mining (Romero, Ventura,
Pechenizkiy, & Baker, 2010) that can help to identify process
models through a datacentered approach. In education, process
mining is increasingly used to capture differences in students’
learning processes (Reimann & Yacef, 2013; Trcka, Pechenizkiy,
& van der Aalst, 2010) and would be beneficial in the field of
educational robotics to further investigate how the robot fits into
these processes.

To analyze the process patterns during successful and un-
successful games and easy and hard games, we used the ProM
software version 6.10 (Rubin et al., 2007). Using this software,
we used Fuzzy Miner (Gun̈ther & Van Der Aalst, 2007; Reimann,
2009) to generate a model for each of our game types. The Fuzzy
Miner algorithm produces a transition diagram from a sequence
of events. In our case, the events were our four visual AOIs.

The Fuzzy Miner algorithm finds underlying processes from
data that appears to be unstructured (Gun̈ther & Van Der Aalst,
2007). Taking in a sequence of events, the algorithm produces
a model that consists of a set of nodes (corresponding to the
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event types) and edges (capturing the relationship between these
events). The model will not show all nodes and edges, but rather
will abstract to create an interpretable model using two metrics:
significance and correlation. Significance is measured for both the
nodes and edges in the graph and captures the relative impor-
tance of the occurrence. In other words, if something occurs more
frequently, it is more important. The correlation is only calculated
for edges and captures how related two events following each
other are. Using these metrics, the model can be simplified.
Events that are highly significant will remain. However, events
that are less significant will be aggregated if they are highly cor-
related and abstracted if they are not. A more detailed description
of this model can be found in Gun̈ther and Van Der Aalst (2007).
n ProM, one can set parameters to specify cutoff values. In this
aper we set the node cutoff to .25, the edge cutoff to .2, and
he utility ratio, which is the weighted sum of the correlation
nd significance of the edges, to .75. These values were chosen
o align with previous research (Bannert et al., 2014). Keeping
hese parameters consistent across our produced graphs allows
s to compare the processes in our different groupings. For all of
he models, we had a log conformance percentage of above 90%.
pecifically, the unsuccessful games model was 94.61%, successful
ames model 93.46%, easy games model 95.71%, and difficult
ames model 91.74%. The log conformance indicates how many
f the events could be replayed given the current model. These
onformance metrics indicate that our models accounted for most
f the data points in our event sequences and well represent the
ata.
In addition to the process models, we conducted inferential

tatistical tests to understand the relationship among cognitive
oad, physiological stress, gaze on AOIs, game duration, game
ifficulty, and game success. To analyze the relation between the
ame difficulty and success, we used a Chi-square test. To analyze
he relation among the cognitive load, game duration and game
uccess, we first divided the dataset based on the success levels
unsuccessful or success) and computed the Pearson correlation
etween the cognitive load and game duration. Similarly, to un-
erstand the relation between cognitive load, game difficulty and
ame duration, we first divided the dataset based on the diffi-
ulty levels (easy or hard) and computed the Pearson correlation
etween the cognitive load and game duration. Similar analyzes
ere performed to understand the relation between two other
ets of measurements: (1) cognitive load, gaze on AOIs (Pacman,
host, Target, Other), and game success; (2) physiological stress,
ame duration and game success.

. Results

We aimed to investigate the relation between game success,
ifficulty and the information extracted from the eye-tracking
ata to address our three research questions. As game difficulty
nd success would be expected to be correlated, before analyzing
he relation between the various game and eye-tracking variables,
e checked if there is a relation between the game difficulty
nd the game success (see Table 1). We observed no significant
elation between the game difficulty and the success of the game
χ2

= 0.01, p = 0.89). This allows us to treat the two variables,
ame success (unsuccessful, successful) and game difficulty (easy,
ard) in an independent manner.

.1. Game success and difficulty processes

In our study, we first aimed to answer the research ques-
ions of (R1) how the participants’ processes changed between
nsuccessful and successful games and easy and hard games.

s a reminder, an unsuccessful game is when the Pacman gets

6

Table 1
The counts for the game difficulties and game successes. The numbers in the
parentheses are the Chi-square residuals. We can observe that none of the
residuals are greater than 1.96 (in magnitude). This indicates that there is no
significant relation between game difficulty and success.

Difficulty

Hard Easy

Success Unsuccessful 8 (−0.25) 11 (0.16)
Successful 21 (0.23) 23 (−0.15)

caught by a ghost, compared to a successful game when all six
targets are reached. An easy game has the speed of the ghosts
set to either 50/60 or 80 and a hard game has the speed set to
120 or 160. For all four cases, we created a process model using
the Fuzzy Miner algorithm. For each of the cases, all four nodes,
each representing an AOI category, were included in the graph.
However, the significance levels changed between the different
cases as well as the edges, or the transitions, between these
fixation events.

For our first model comparison, we investigated the differ-
ences between the unsuccessful and successful games (see Fig. 4).
In both sets of games, we see that self loops tended have the
highest significance. This result means that participants tended to
be looking at an object, have fast eye movements to scan and then
return to what they were originally focused on. Some of these
self loops can be explained by there being more than one area of
the screen labeled as that AOI. For example, there are six targets
and two ghosts. In unsuccessful games, we found that Other, or
areas of the game that did not include the robots or targets, were
central points. Most transitions between AOIs occurred either
going to or coming from Other. In other words, participants did
not often transition between a target, a ghost robot, and their
Pacman robot without first focusing on another area on the board.
The exception to this is the edge between Target and Pacman.
During an unsuccessful game, the participants would transition
between focusing on a target and their Pacman robot.

In contrast, a successful game process was very similar to
an unsuccessful game process with two important changes to
the edges. First, there was no edge going from Target to Other.
Second, there is an added transition from Target to Ghost. This
change is edges means that after the participants focused on an
target, they would then either focus on a ghost or Pacman, but
no longer on other places on the board.

For the easy games, we found that the process model was
very similar to that of an unsuccessful game (see Fig. 5). Most of
the transitions occurred with Other as an intermediary with the
exception of a participant’s gaze moving from a target to their
Pacman. As with the unsuccessful and successful games, there
were also self loops when the participant focused back on the
same object after a saccade.

In the difficult games where the ghosts are moving faster, we
again see that the types of transitions with the Other AOI are
reduced as we had seen with the successful games. In this case,
the transitions around the ghosts changed. Rather than having
transitions between Ghost and Other, during the difficult games,
participants would shift their gaze from the Pacman to the ghost
and from the ghost to the target location. We explore these
differences further in our discussion section.

5.2. Cognitive load, game duration, success and difficulty

For R2, we investigated how a participant’s cognitive load
changes throughout their sessions in relation to game success and
game difficulty. The number of kids in each bucket varies accord-
ing to Table 2, this is the reason why the gray area (representing
the 95% confidence interval) increases towards higher gameID.
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Fig. 4. Process models for unsuccessful games (left) and successful games (right). Each node is labeled with its significance and each edge with its significance (S)
and correlation (C). The successful games had more transitions from the Target to the Ghost rather than back to Other compared to the unsuccessful games as seen
through the red and blue lines. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Process models for easy games (left) and hard games (right). Each node is labeled with its significance and each edge with its significance (S) and correlation
C). The hard games had more transitions from the Ghost to Target and Pacman to Ghost rather than involving Other compared to the easy games as seen through
he red and blue lines. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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umber of children and each gameID. The order ID of the games is simply an
ncremental counter assigned to each game in the order they were played by
he children. For example, the first game was given ID ‘‘1’’ and the second game
as given an ID ‘‘2’’. The numbering restarted at 1 for every new child.
GameID 1 2 3 4 5 6 7 8 9 10
#Children 18 18 17 16 12 9 7 6 4 3

We observed an interaction effect between the duration of the
ame, the game success and the timing of the game (the order
D of the game). For the unsuccessful games there is a negative
orrelation between the duration of the game and when the game
as played (Spearman’s ρ = −0.87, p = 0.001). There is no such

‘‘linear’’ relation in the case of successful games. Fig. 6 shows the
evolution of game duration for both successful and unsuccessful
games based on their IDs. One can observe that for the successful
games there is ‘‘U-shaped’’ curve between the game ID and the
game duration.

Furthermore, we observed a significant negative correlation
between the cognitive load and the duration of the games. The
longer the game lasts, the higher a participant’s cognitive load
gets (r(90) = −0.20,p = 0.04). Additionally, we observed an
interaction effect for the relationship between the cognitive load,
 −

7

game duration and players’ success. The negative correlation be-
tween the cognitive load and the duration of the games becomes
non-significant for the un-successful games (r(30) = −0.16, p

0.36); whereas, it becomes stronger for the successful games
r(58) = −0.26, p = 0.04). Fig. 6 shows the relationship between
he three variables. One important observation is that there is a
tronger correlation between the cognitive load and the duration
f the successful games for the initial games (less than five games,
(41) = −0.30, p = 0.04). Finally, there is an interaction effect for
he relation among the game difficulty, game duration and the
ognitive load (Fig. 7). There is a significantly negative correlation
etween the cognitive load and game duration for the hard games
r(58) = −0.36, p = 0.04) while there is no significant correlation
etween cognitive load and the game duration for the easy games
r(30) = −0.22, p = 0.09). However, when we combine the game
ifficulty and the game success to analyze the relation between
he cognitive load and game duration, we observe that the neg-
tive relation is significant only for the successful low difficulty
ames (r(21) = −0.43, p = 0.03) while for the other combinations
he correlation stays negative but not significant: unsuccessful
ow difficulty (r(9) = −0.30, p = 0.36); successful high difficulty
r(19) = −0.38, p = 0.08); unsuccessful high difficulty (r(6) =
0.31, p = 0.44).



J.K. Olsen, A. Guneysu Ozgur, K. Sharma et al. International Journal of Child-Computer Interaction 31 (2022) 100447

t
t
a
t
t
s
s
d
m
f

5

t

0
v
l
t
M
m
w
t
t

6

p
i
s
l
2
u
f
w
b
g
a
t
r
i
t
g
m

l
s

m
f
m

Fig. 6. The evolution of the cognitive load and game duration for the game ID
(x-axis). The gray area is the 95% confidence interval. The actual range for the
cognitive load is [0–1]. The negative values within the gray area is due to the
large confidence interval. Y-axes are normalized between 0 and 1, to save space
the Y -axis is plotted between 0 and 0.75. The maximum gameID per individual
for successful games was 9, while that for the unsuccessful games was 10.

Fig. 7. Scatter plot between the cognitive load (x-axis) and game duration
(y-axis) for the different game difficulty levels (color)..

5.3. Physiological fatigue, game duration, success, and difficulty

For R3, we analyzed the relation between physiological fa-
igue, game duration, game success, and game difficulty to inves-
igate the correlations between participants’ physiological fatigue
nd game success. We observed an interaction effect among the
hree variables (Fig. 8). There is a significantly negative correla-
ion between the physiological fatigue and the game duration for
uccessful games (r(58) = −0.35, p = 0.03) while there is no
ignificant relation between the physiological fatigue and game
uration for unsuccessful games (r(30) = 0.18, p = 0.21). Further-
ore, there is no difference between the levels of physiological

atigue and the game difficulty (F[1,87] = 0.70, p = 0.40).

.4. Cognitive load, gaze on ghost and success

Finally, typing R1 and R2 together, we investigated the rela-
ionship between cognitive load, gaze on ghost, and game success.
8

Fig. 8. Scatter plot between the physiological fatigue (y-axis) and game duration
(x-axis) for the different game outcome levels (color)..

We found a significant interaction effect between the proportion
of time spent looking at the ghost robot, cognitive load and game
success. For the successful games there is a negative correlation
between the cognitive load and the proportion of time spent
looking at the ghost robot (r(58) = −0.27, p = 0.04). In contrast,
there is no such correlation for the unsuccessful games (r(30) =

.01, p = 0.98). Fig. 9 shows the relationship between the three
ariables. It is important to clarify that the points on the top-
eft and bottom-right of Fig. 8 are not outliers (they represent
he minimum and maximum observed cognitive load, due to a
inMax normalization). The point on the bottom-right shows the
aximum cognitive load (i.e., the highest cognitive load recorded,
hich does not depict ‘‘cognitive overload’’) and also it is possible
o have all the attention on the ghost robot for a game (point on
he top-left of Fig. 9).

. Discussion and conclusion

In this paper, we investigated how the behavioral patterns,
articularly those of attention, change for children with learn-
ng difficulties in a robotics-based game based on difficulty and
uccess. Previous research has shown the impact of embodied
earning on attention (Cassar & Jang, 2010; Frutos-Pascual et al.,
014), but there is less work on how to adapt these systems to
sers. A first step is to understand the current attention processes
or which eye tracking can be used. For research question R1,
e aimed to answer how the participants’ processes changed
etween unsuccessful and successful games and easy and hard
ames. Particularly, we were interested in how the participants’
ttention to the robots fit into their game-play process and how
he robot behaviors influenced these attention measures. For
esearch questions R2 and R3, we aimed to answer how a partic-
pant’s (R2) cognitive load and (R3) physiological fatigue changes
hroughout their session and in relation to game success and
ame difficulty. To address these questions, we used process
ining to discover transition patterns between the relevant AOIs
in the game, and we analyzed the cognitive load and physio-

ogical stress of participants during the games in relation to game
uccess and difficulty.
From our analysis, we found that the participants engaged in

ore direct transitions between the relevant AOIs in the success-
ul games and had a different level of cognitive load. The process
ining revealed that for unsuccessful games, the participants had
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Fig. 9. Scatter plot between the cognitive load (x-axis) and the proportion of the
gaze on the ghost robot (y-axis) for the different game outcome levels (color)..

other AOIs as a central event. In other words, the transitions
between Target, Ghost, and Pacman fixations were interspersed
with the participant focusing elsewhere in the game first. One
exception is that the participants would look from the target
back to their Pacman. In contrast, in successful games, the ghost
robots were monitored more closely during the game play. In
our model, this becomes apparent by the added transition from
Target to Ghost and the lack of transition to Other. When a
participant successfully completed a game, after focusing on a
target, they would either focus on the ghost or Pacman. This
difference with the unsuccessful games shows the importance of
the attention to the ghost robots to not get eaten by them and
lose the game. Additionally, this importance is reflected in the
increased significance of the ghost node in the process model.
These results are further supported in that there is no correlation
between ghost fixations and cognitive load in an unsuccessful
game but a negative correlation in a successful game. Paying
more attention to the ghosts lowers the mental effort. Given these
findings, we can support students when they have high mental
effort by including interventions that help them to focus attention
on the pertinent items at these times. For example, different ghost
designs may be able to be used to draw the child’s attention.

As with the game success, game difficulty impacted partici-
ants’ processes. However, unlike game success, which is more
losely tied to participants’ individual performances, game diffi-
ulty is tied to the robot performance — specifically the speed
t which the ghosts moved. For the easy games, we found a
imilar process to those of the unsuccessful games in which the
ther AOI played a central role and a transition between Target
o Pacman. For the hard games, we found a different process
gain bringing the ghosts into a more prominent role in the
ame play. In the hard games, there was no longer a transition
etween Ghost and Other. Rather, before focusing on a ghost,
articipants would often be focused on their own Pacman, and
fter focusing on the ghost, they would move focus towards the
arget. In this case, we have a loop between Target, Pacman,
nd Ghost. The more connected Ghost, Target and Pacman AOIs
eflects the change in difficulty. As the ghost robots increase their
peed, it is important to know where they are. It is not possible
o keep moving towards the target if you will get blocked by
he ghosts. At the higher speeds, this is more likely to happen
nd other strategies need to be put into place. This loop between
he relevant AOIs may reflect that the student is more aware
9

of all of the relevant parts of the game at any given time. As
with the successful games, the increased significance of the ghost
node in harder games also reflects the increased attention that
it receives. These results demonstrate that game difficulty can
mediate strategies and attention patterns, forcing individual to
only focus on significant targets in harder games. This novel
insight can be used in two ways: (1) as a diagnosis tool, to
determine the difficulty for each individual by assessing if only
significant AOIs are looked at and (2) as an adaptive tool to keep
the child challenged by changing the game difficulty to keep the
child in a significant AOI pattern.

For the cognitive load, we see that the games at the beginning
of the session tend to have a higher cognitive load for both the
successful and unsuccessful games. This result can be explained
by participants learning to play the game. As they learn the rules
and strategies, their cognitive load would decrease. In the later
successful games, we again see an increase in the cognitive load.
This is similar to other problem solving strategies where cognitive
load was higher in the cases of high-performance (Van Gog,
Kester, & Paas, 2011; Van Merrienboer, Schuurman, De Croock,
& Paas, 2002). This change is most likely due to the later games
being those of higher difficulty. When the participants are un-
successful in a game, they do not pay as much attention to the
ghosts, as we saw in our process models so the change in speed is
unlikely to increase their load. In the successful games, the ghosts
are a more integrated part of the participant’s process and the
increase in speed could explain the increase in the cognitive load.
Our results highlight both the importance that a participant’s at-
tention can have on the outcome of an activity as well as how the
actions of the robot can influence this attention. If a participant
does not pay attention to the robot after critical moments in
the process, for example, in this game being aware of the ghost
location compared to the target, then the participant will not be
successful in the task. The positive news is that we can design
the robotic behaviors to influence the attention of the participant.
As we saw with the change in game difficulty, a change in robot
behavior can change the way that the participant integrates that
robot into their process.

In this case, we may be able to use the adaptable robot behav-
iors to change the child’s behavior. In easy games, there may not
be enough engagement with the game to influence the children
to beneficially regulate their attention behaviors. By extending
the research that shows interest in a task is a mediating factor
for self-regulation (Sansone & Smith, 2000), increasing a child’s
engagement with a task may support their attention regulation.
By increasing the difficulty across games, hence making it more
engaging, the children may begin to engage in beneficial attention
patterns. However, as we saw from our results, the participants
were not more likely to be unsuccessful during an easy than a
hard game. This means at any given time, a child may disengage
from the activity. From our results, we see that cognitive load may
be able to be used as an indicator of this disengagement. If the
child has a low cognitive load, it means they may be disengaged.
We could adaptively adjust the ghosts’ speed for a short period
of time during the game to try to re-engage the child. Choosing
the optimal game speed based on cognitive load is also supported
within serious games (Petko, Schmid, & Cantieni, 2020). These
two proposed adaptive behavior build upon our findings in this
paper.

However, to assess if they have an impact on engagement and
subsequently, skill acquisition, further studies are needed.

For future work, it is also important to consider the eth-
ical issues that come with data collection from children. CCI
researchers have always been cautious about ethical and pri-
vacy concerns (Dowthwaite et al., 2020; Kawas et al., 2020;
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Van Mechelen, Baykal, Dindler, Eriksson, & Iversen, 2020). Prepa-
rations of studies using any sensing technology (including eye-
tracking) require special attention and additional time to the
ethics of data collection from a practical standpoint (Markopou-
los, Read, & Giannakos, 2021). But the benefit with the eye-
tracking is that the data can easily be kept anonymous because
there is no video of the face or any audio files. In this way,
eye tracking measure can provide a significant amount of data
that can be used in as input into the system (Al-Shathri et al.,
2013) without the children being watched or listened to. When
it comes to the social aspects of the studies with children using
the eyetracking, there are certain roles that the caregivers (in case
of the children with special needs), parents, or teachers can play.
These roles will not only allow the studies to be conducted in
a smooth fashion but also might increase children’s acceptance
of the eye-trackers in a broader context than the one used in the
study (Sharma & Giannakos, 2021). Finally, when it comes to chil-
dren with special needs such as ASD and ADHD, an overwhelming
proportion of such children often fail to achieve conventional
independence as adults in terms of behavioral markers (Shattuck
et al., 2012). The traditional intervention approaches might not be
sufficient to create opportunities for addressing these skills and
deficits within and across naturalistic settings in appropriately
intensive sessions (Goodwin, 2008).

This work is not without its limitations. First, we have a
mall sample size of 17 participants. As these participants had
range of backgrounds, individual differences could sway our

esults. Second, in our study, the participants were given signifi-
ant choice over their amount of interaction and difficulty level. It
ay be that the participants engage in different processes when

hey choose their difficulty rather than the choice being made for
hem, which is common in many adaptive systems. Additionally,
n this paper, we focused on children with learning difficulties
ithout a comparison to those without, and our analysis was

imited to correlations due to this design. This limits us to control
or factors in the study, which we would solve in the future by
ecruiting more children to have a critical sample to conduct
epeated measure ANOVA. Such analysis will provide more robust
esults than the results based on the correlations.

Additionally, further research is needed to understand if sim-
lar patterns exist across groups. Finally, with a more controlled
et of participants, further gaze analysis could be conducted to
licit the emergence of attention anchors used by participants
hen planning the path for Pacman to escape the ghost and reach
he target (Abrahamson, Shayan, Bakker, & Van Der Schaaf, 2015).

In summary, analysis of eye-tracking data is a powerful tool
o analyze processes and action patterns in robot–child games.
hile this work will be useful to our project in the design of

daptive game scenarios to train children with attention difficul-
ies, we believe that the impact of it goes beyond this and could
enefit embodied, game-based learning designs more broadly.
e demonstrated how through using eye-tracking data, one can

nalyze the interaction as a whole and build a model of the user’s
ognitive processes. In particular, with our study, we found that:

• Specific gaze patterns and cognitive load are characterizing
successful versus unsuccessful strategies.

• Increased game difficulty generates more focused game pat-
terns on significant areas of the workspace.

• Cognitive load is correlated with attention to the meaningful
elements of the game and could be used to put interventions
in place.

his cognitive dimension is, we believe, crucial to take into ac-

ount when building adaptive support systems.

10
Selection and participation

All the participants of the study were students from the
Norwegian University of Science and Technology (CITY HERE,
Switzerland). Studies took place at the school campus in the class-
rooms. Data related to the study were collected after approval
from Ecole Polytechnique Federale de Lausanne, Switzerland,
following all the regulations and recommendations for research
with children. A researcher contacted the teacher and the legal
guardian of each child to get a written consent that gave permis-
sion for the data collection. The children were informed about the
data collection process and their participation in the study was
completely voluntary. They could withdraw their consent for the
data collection at any time without affecting their participation
in the coding activity.
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