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Abstract— Learning from Demonstration (LfD) empowers novice
users to teach robots daily life tasks without writing sophisticated
code, thereby promoting the democratization of robotics. However,
novice users often provide sub-optimal demonstrations, which
can potentially impact the robot’s ability to efficiently learn
and execute the tasks. Prior research has assessed the quality
of demonstrations by evaluating the robot’s task performance;
however, the approach remains insufficient to qualify individual
demonstrations, leaving the reason for classifying demonstrations
as high- or low-quality unknown. Therefore, this simulation-based
study aims to quantify the quality of individual demonstration at
each step by incorporating motion-related quality features such as
manipulability and joint-space jerk. To assess the efficacy of these
features, we initially evaluated the given demonstrations—taking into
account each quality feature—to rank them from high- to low-quality.
Subsequently, we investigated the impact of demonstration’s quality
on task performance and the quality of task execution. In this
pursuit, we trained a series of LfD models for distinct manipulation
tasks: cube lifting and pick-and-place of soda can. Our results
illustrate a strong correlation between ranked demonstrations and
the quality of task execution. Interestingly, we observed that the
quality features have a significant impact on task performance,
particularly when the provided demonstrations exhibit diversity
in terms of quality. Overall, this analysis enables quantifying the
quality of individual demonstrations based on motion-related quality
features, thus improving learning from demonstration.

Index Terms—Learning from demonstration, quality of
demonstration, quality of task execution, task performance

I. INTRODUCTION

To overcome the obstacle of using robots for daily life tasks
without programming skills, the ‘Learning from Demonstration’
(LfD) approach offers a promising solution. This strategy, inspired
by human interactions, enables novice users to instruct robots
through demonstrations instead of navigating the complexities
of coding [1]. Through LfD, users can seamlessly impart tasks
to robots, making the integration of robotic assistance more
accessible and user-friendly for individuals without programming
expertise.

One of the key goals in LfD is to enable a robotic system
to efficiently learn and execute tasks with a minimal set of
demonstrations. Achieving this goal is heavily contingent upon
the quality of the provided demonstrations as well as modality of
demonstration [2], as it directly shapes the overall competency of
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the robotic system. According to Laskey et al. [3], LfD algorithms
fall into two broad categories: robot-centric and human-centric.
In the former type, the robotic system initiates its learning process
from a given set of demonstrations and then actively learns from
its surroundings, incorporating feedback provided by the demon-
strator [4]. On the other side, the human-centric approach involves
learning an LfD model from a set of demonstrations provided by
novice users; an example of this approach is imitation learning [5].
In the literature, researchers have devoted considerable attention
to the robot-centric side, with comparatively less emphasis on
the human-centric aspect for enhancing LfD [6]. In the domain
of LD, the quality of demonstration encompasses the dexterity
and smoothness exhibited by novice users [2]. Meanwhile, the
quality of task execution gauges the robot’s aptitude to carry
out the intended tasks, taking into consideration features such
as manipulability [7] and joint-space jerk [8]. This dual focus
on both the quality of demonstration and the quality of task
execution significantly contributes to the enhanced performance
and adaptability of the robotic system within the LfD paradigm.

Existing evaluation of demonstration’s quality mainly
focuses on appraising the robot’s task performance, classifying
demonstrations as either high-quality or low-quality based
on the success or failure of the task [9], [10]. While quality
assessment of task performance is crucial for human-centric LfD,
previous approaches do not allow for assessment of individual
demonstration. Instead, the task performance’s evaluation is
typically applied to a set of demonstrations utilized for training
an LfD model—a machine learning model that reproduces actions
observed during demonstrations—employing task performance
as the primary metric. The inclusion of a learning phase to train
the LfD model makes this process potentially time-intensive.
Furthermore, the underlying reason for the given demonstrations
being of high or low quality remains unclear to the user. In
response to these limitations, it becomes crucial to systematically
measure and assess each demonstration, taking into consideration
various quality features. Feature-based methods [11], [12] present
a promising approach to address the mentioned limitations,
specifically the issues of being time-intensive and lacking clarity
on why a demonstration is classified as high or low quality.
Therefore, this study aims to investigate a set of quality features
by quantifying individual demonstrations at each step based on
quality features and subsequently assessing the impact of the
demonstration’s quality on task performance and the quality of
task execution.

This study makes three primary contributions: firstly, it
advocates for the utilisation of motion-based features to quantify
the quality of individual demonstrations at an early stage and
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Fig. 1: Overview The given datasets have been evaluated based on the quality features, including manipulability and joint-space jerk,
and ranked them from high to low quality. At next step, we trained an LfD model for each group, where N¢ denotes the total number
of groups, followed by rollouts the learned LfD model in order to compute the task performance and assess the quality of task execution

based on the quality features.

regardless of learning an LfD model. Secondly, it highlights the
transferability of quality features from provided demonstrations
to the corresponding LfD model generated motions. Finally, it
posits that our quality features can serve as an indicator of task
performance when used in a diverse set of demonstrations.

II. BACKGROUND AND RELATED WORK
A. Assessing Novice Users’ Input in LfD

Several LfD algorithms assume that users are proficient and
can provide optimal demonstrations [2]. However, this assumption
often neglects the heterogeneous nature of human demonstrators,
leading to sub-optimal demonstrations [13]. The quality of
demonstrations can vary from user to user, influenced significantly
by their understanding of the task and their capabilities to provide
effective demonstrations [14].

Pais et al. [15] proposed three metrics to evaluate the user’s
ability, including maneuvering the tool, consistency in teaching,
and arm coordination. The metric such as consistency in teaching
may not inherently depict the quality of a demonstration, as
users could potentially exhibit similar errors across different
demonstrations. Fischer et al. [16] compared teaching modalities
in LfD, and used three common issues associated with novice
operators: 1) self-collision, 2) singularity, and 3) excessive force
on the end-effector. However, multiple ways of controlling the
robot have been studied but did not evaluate the impact of these
issues on the learned LfD model.

To evaluate the diversity of demonstrations across task space,
Sena et al. [17] proposed two metrics: 1) teaching efficacy and 2)
teaching efficiency. These metrics alone are insufficient for assess-
ing the quality of individual demonstrations, as they primarily ad-
dress the issue of data sparsity. Furthermore, the concept of entropy
has been utilized to identify areas where additional demonstrations
are required for effective robot learning [18]. The entropy approach
is an interesting but focuses on diversity of the demonstrations
instead of quantification of individual demonstrations at each step.

B. Assessing Quality of Task Execution

To quantify the quality of task execution, previous research
collected six core quality features: manipulability, jerk at Cartesian
and joint-space, trajectory length in Cartesian and joint-space, and
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(a) Lift task (b) Pick-and-place of soda can

Fig. 2: Manipulation tasks using Robosuite platform [19]

robot’s joint limits [9]. Nevertheless, these features have not been
utilized for quantifying the quality of demonstrations. Among
these quality features, Chen et al. [8] investigated the importance
of smoothness in robot learning, where they proposed an approach
to identify and eliminate noises by providing alternative optimal
control commands to the robot. Secondly, the manipulability is
an important feature to consider because it directly impacts the
maneuverability of the robotic system [7]. Furthermore, Jaquier
et al. [20] proposed an interesting approach to learn and replicate
manipulability ellipsoids from provided demonstrations. However,
we aim to investigate the impact of quality features irrespective
of learning particular feature from given demonstrations.

Our work introduces innovation by explicitly assessing
individual demonstration based on quality features and evaluating
their influence on both task performance and the quality of task
execution. We selected two quality features—manipulability and
joint-space jerk—based on the relationships established by [2].
To clarify, high-quality demonstrations are those with the highest
measures of these features, while low-quality demonstrations have
the lowest measures. We hypothesize:

H1 The quality of demonstration correlates with task performance.
H2 The quality of demonstration correlates with the quality of
task execution.

III. FEATURES FORMULATION

In this section, we present the mathematical formulation of
motion-related quality features, including manipulability and
joint-space jerk. Additionally, we provide a detailed description
of the ranking criteria applied to the given demonstrations.



A. Manipulability

Manipulability measure quantifies how far the current config-
uration of a robotic system is from a singular configuration, where
the robotic system cannot move in a specific direction [21]. We
selected the manipulability measure because it directly represents
the robot’s dexterity. In assessing the demonstrations, higher mea-
sures of manipulability correspond to high-quality demonstrations,
while the opposite holds for lower measures of manipulability.

Consider a robot with n degrees of freedom whose joint
variables are denoted by ¢ = (go,¢1,-.,¢n), Where ¢; € R. A
demonstration (D) can be defined as a joint-space trajectory
D = (gy,...,gr) over the time period 0 <t < T, where g; and T'
represent the joint configuration of the robot at time step ¢ and
the total duration of the demonstration, respectively.

Let D = (D1, Do, ..., Dk) depict the set of all given
demonstrations, where D; indicates the i** demonstration.
The total number of demonstrations is represented by K,
where K = |D|. For a task with m dimensions, the Jacobian
matrix J(q) : R* — R™*" is computed for the given joint
configuration (g) of the robot. The manipulability measure (w)
for demonstration D; at time step ¢ is then expressed as:

w(Dyst) =1/ det J(G)J" (Gt) ey
Finally, we computed the manipulability based metric o; € R
for demonstration D;, by finding the average difference between
the manipulability measure at each time step and the global
maximum value r = {maxz(d(D1),d(D2),...0(Dk))} € R,
where &(D;) = (w(D;,0),....w(D;,T)).

1 T
o= ‘D'Z(r_w(pm) )
=0

A higher « value indicates a poorer manipulability measure,
representing a low quality demonstration, and vice versa.

B. Joint-space Jerk

For a robot joint index j in a given demonstration D;, the jerk
¢(D;,j,t) is computed by taking the triple derivative of the robot’s
joint position for the given period 0 <t <T'.

Next, the mean jerk value ((D;,7) € R is calculated followed
by computing a jerk based metric 3; € R for demonstration D;,
indicating how much demonstration D; contains jerky motion
at joint-space level.
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Based on the 3 value, ranking is determined with lower values indi-
cating smoother demonstrations, while higher values correspond to
a higher magnitude of jerks, indicating low quality demonstrations.

IV. ANALYSES SETUP

In this section, we discuss the dataset and the procedure
employed for computing task performance. Additionally, we
elaborate on the criteria for selecting an algorithm for training LfD
models, focusing on task performance while utilizing a minimum
number of demonstrations.

A. Dataset

In this study, we used the robomimic v0.1 dataset for the
analyses [22], [23]. The demonstrations in the dataset were
collected using the RoboTurk tool [24]. Among multiple tasks,
we considered the lift and pick and place tasks because they
encapsulate fundamental manipulation skills such as grasping,
lifting, and placement as shown in Fig. 2. To investigate the
influence of diverse-quality demonstrations, we considered both
a “proficient” (P) and a “multi-human” (MH) dataset, with a total
of 200 and 300 successful demonstrations for each manipulation
task, respectively. In the multi-human dataset, the demonstrations
were gathered by six operators with varying expertise, comprising
two proficient, two normal, and two worst performers. Each
individual contributed a total of 50 demonstrations, resulting in
a dataset with mixed quality. On the other side, the proficient
dataset consists of demonstrations provided by expert user.

B. Performance Criteria

To compute the success rates, we utilized the learned LfD
models—obtained using one of the LfD algorithms—to execute
the same task as observed during the demonstrations. In both the
demonstration and execution phases, the initial pose of the object
was set randomly. For the lift task, the learned model requires to
successfully lift a cube to a specific height of 0.06m, while for the
pick-and-place of soda can, the robot needs to pick up a soda can
and accurately place it in its designated location (see Figure 2b).

C. Learning Algorithms

In real-world scenarios, it is often impractical for human users
to provide a large number of demonstrations; therefore, one of the
objectives in LD is to train a model with a minimum number of
demonstrations [25]. In this pursuit, we propose to identify which
of the algorithm provided by Mandlekar et al. [22] exhibits the best
performance with a minimal number of demonstrations. We test:
Behavioral Cloning (BC) [26], Hierarchical Behavioural Cloning
(HBC) [27], Batch-Constrained Q-Learning (BCQ) [28], and
Implicit Reinforcement without Interaction at Scale (IRIS) [29].

The BC algorithm executes simple regression over a sequence
of state-action pairs in the given dataset. Several variants of
BC algorithm, including BC based on Gaussian mixture model
(GMM), have been investigated for different types of manipulation
tasks [22]. The HBC and IRIS algorithms are identical, except
the latter includes the addition of a value function in a high-level
mechanism to locate a state with the maximum expectation.
In this way, the IRIS algorithm is suitable for identifying near
optimal state-action pair. Lastly, the BCQ algorithm is an offline
batch reinforcement learning [28]. In this study, we considered
an offline learning, where the algorithms are not permitted to
consider additional samples.
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Fig. 3: This figure illustrates the performance of algorithms for the
given different number of demonstrations per group, considering
both the (a) lift task and (b) pick-and-place of soda can.

For each algorithm, we computed the success rates —
representing the number of successful task executions divided by
the total number of rollouts [22] — for each set of demonstrations.
The term “rollout” represents the deployment of the learned LfD
model on a robotic system to evaluate its performance on the
given task. To determine the minimal number of demonstrations
to achieve an acceptable success rate, we devised 10 groups of
varying sizes ranging from 10 to 100 demonstrations, with an
incremental factor of 10 demonstrations. Additionally, we devised
one group which consist of 5 demonstrations. Overall, this resulted
in training 44 models per task, with 11 models for each algorithm.
To validate the effectiveness of the models’ performance, we
employed the k-fold cross-validation technique for each group.

D. Experiment Parameters

Observing the learning curves [22], a suitable number of
epochs for both the lift and pick-and-place tasks is 250, utilizing
a batch size of 100. Next, the learned model was subjected to
25 rollouts after every 50 epochs, allowing the computation of
success rates. To ensure the adaptability of the learned model to
an actual robotic system, the rollouts were performed on the same
robotic system using the Robosuite platform [19]. Throughout the
experiments, the demonstration data was partitioned into training
and validation sets with a split ratio of 80% and 20%, respectively.

V. SELECTION OF LEARNING ALGORITHM

In our preliminary analyses, the algorithm with the minimum
number of demonstrations required to achieve an acceptable
success rate of 90% and 70%, values observed from the learning
curves where the algorithm converged [27], for the lift and
pick-and-place tasks, respectively. For each algorithm, the models
were trained on the same set of demonstrations using 5-fold
cross-validation with same performance criteria and experimental
parameters. Additionally, the multi-human dataset was used for
both manipulation tasks: lift task and pick-and-place of soda can.

Regarding BC-GMM algorithm, the success rates are
significantly low for a small number of demonstrations; however,
it improves with the increasing number of demonstrations as
shown in Fig. 3a. Each algorithm, as illustrated in Fig. 3b,
exhibited lower success rates as the task complexity increased
from the simple lift task to the relatively complex pick-and-place
of soda can. For example, the success rates of BC-GMM
algorithm are almost halved for the pick-and-place task as
compared to the lift task. In addition, the BCQ algorithm also
exhibited poor task performance, less than 0.2 for all the given
sets of demonstrations as depicted in Fig. 3b. In the case of
HBC and IRIS algorithms, the success rates showed satisfactory
outcomes for both manipulation tasks as shown in Fig. 3a and 3b.

A notable drop in task performance was observed, particularly
in the case of the BCQ algorithm for the pick-and-place of soda can.
One possible explanation is that the BCQ algorithm extrapolates
to unseen states to find a solution, making it challenging to
accomplish complex manipulation tasks. Similar issue has been
addressed for grid world problems as well [29]. From the results,
we noticed that the IRIS algorithm requires more data as the task
complexity increases to yield satisfactory results. One possible
reason is that the IRIS algorithm, due to its limitation [29],
demands every possible state of the object in the training dataset.
Therefore, for complex manipulation tasks, more data is needed
to cover as many states as possible in the case of IRIS algorithm.

Overall, according to the criterion of achieving the maximum
success rate, the minimum number of demonstrations is 20 per
group for the lift task, as shown in Fig. 3a, while the minimum
number is 30 per group for the relatively complex pick-and-place
of soda can, as illustrated in Fig. 3b. Both algorithms, HBC and
IRIS, exhibited satisfactory performance. Given the application of
the IRIS algorithm in handling diverse and suboptimal demonstra-
tions [29], we selected the IRIS algorithm for our analyses.

VI. QUALITY
FEATURES AND RANKING OF DEMONSTRATIONS

In this section, we present the method followed for a series
of experiments aiming at testing our hypotheses — high quality
demonstrations will correspond to higher task performance (H1)
and will attain an efficient task execution (H2). As a first step, we
discuss here the ranking of demonstrations based on the quality fea-
tures. For each demonstration, considering both manipulation tasks
provided by proficient and multi-human, we computed the metrics
based on manipulability and jerk features using (2) and (4), respec-
tively. Finally, we ranked all demonstrations from high to lower
value, creating groups of 20 and 30 consecutively for both the lift
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Fig. 4: Each sub-figure illustrates ranked demonstrations based on the manipulability feature, where o represents the average of
manipulability based metrics («) of the corresponding group. In Fig. 4d, the worst demonstration (cyan line) in the dataset falls to

zero values for some interval, indicating a singular configuration.

TABLE I: Statistics of dataset based on quality features along with correlation coefficients and the corresponding p-values.

Lift task Pick-and-Place Soda Can
Proficient (P) ~ Multi-Human (MH)  Proficient (P) ~ Multi-Human (MH)
Stats  Manip mean +std  0.03240.004 0.05740.007 0.03540.009 0.04240.011
Jerk mean = std 6854212 1401+1256 1940+£513 303111868
H1 Manip corr 0.17 —0.11 —0.28 0.11
p-value 0.635 0.680 0.590 0.750
Jerk corr 0.38 —0.60 0.31 —0.66
p-value 0.270 0.019 0.55 0.036
H2 Manip corr 0.68 0.78 0.77 0.60
p-value 9.59x 1024 9.62x1030 2.35x 10715 1.63x 1012
Jerk corr 0.75 0.84 0.86 0.73
p-value 2.06x 10732 4.38x10~96 1.68x 10729 3.39x10716

and the pick-and-place of soda can tasks, respectively. The best
group comprises top-ranked demonstrations while the worst group
contains low-ranked demonstrations. To illustrate the quality diver-
sity among the provided demonstrations, the mean and standard
deviation based on the quality features are summarized in Tab. L.

A. Manipulability

Considering the multi-human dataset, the manipulability curve
&(D) of each demonstration for the lift task can be represented as
shown in Fig. 4. The best group, as illustrated in Fig. 4a, comprises
demonstrations with high manipulability measures, with average
group a¢ value 0.041. The term o represents the average of

manipulability based metrics (c) of the corresponding group. As
the value of ag increases, the corresponding demonstrations in
the group gradually fall to the lower manipulability measures
as shown in Fig. 4. The worst group consists of demonstrations
with average group a¢ value 0.066, including demonstration
that contain zero values for some interval, representing a singular
configuration, as shown in Fig. 4d.

B. Joint-space Jerk

For the pick-and-place of soda can using proficient dataset, the
jerky motion of multiple demonstrations with varying magnitude
are depicted in Fig. 5. The best demonstration showcases the
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Fig. 5: Each sub-figure depicts a ranked demonstration based on the jerk feature. The worst demonstration exhibits jerky motion
throughout the entire length of the demonstration, while the best demonstration indicates smoother motion profiles.



lowest jerk magnitude for all joints of the robotic system, as
illustrated in Fig. 5a, with a 8 value 1179.89. Furthermore, the
value of [ increases with the jerk magnitude, where the worst
demonstrations exhibiting high magnitude with S equals to
4208.18, as illustrated in Fig. 5d.

VII. RESULTS

As per the results on the performance of various L{D algorithms
on the lift and pick-and-place tasks (see Section V), we choose
to use IRIS in the following experiments. We trained a series of
IRIS-LfD models for both manipulation tasks and analyzed the
correlation between input ranked groups and corresponding task
performance (H1), as well as the quality of task execution (H2).
The findings of each study are presented in detail in the following
subsections.

A. Study 01 (HI)

To evaluate the first hypothesis, we computed the correlation
coefficients between ranked groups and the corresponding success
rates (i.e. task performance). As depicted in Fig. 6, there is no
apparent impact of the manipulability feature on task performance
in both manipulation tasks as well as both datasets (P and MH).
Moreover, the p-values exceed 0.05 in all cases. Regarding the
jerk feature, the correlation coefficients also show no effect on
task performance in the case of the proficient (P) dataset as shown
in Fig. 7a and 7c. However, we found strong correlations for both
manipulation tasks, lift (r =—0.60, p=0.019) and pick-and-place
of soda can (r = —0.66, p = 0.036), in the dataset provided by
multi-human (MH), as illustrated in Fig. 7b and 7d. Overall,
the impact of demonstration’s quality on task performance is
significant when the demonstrations are of diverse-quality.

B. Study 02 (H2)

Our second hypothesis aimed at assessing if quality features
were implicitly learned by our LfD algorithm. To calculate the
outcomes of task execution’s quality, we assessed each rollout
using the same metrics as above, o and 8. We then tried to see
if there was any correlation between the quality ranking of each
group of demonstrations used as input and the task execution
quality produced after rollout. Furthermore, we used the actual
values to provide a more realistic interpretation of the outcomes.
The correlation analyses were performed for each feature across
both types of datasets: proficient and multi-human.

Regarding the manipulability feature, there were strong correla-
tions between input ranked groups and the corresponding rollouts
as presented in Tab. L. For the jerk feature, the coefficients also
showed strong correlations between input-ranked groups and the
corresponding rollouts as shown in Tab. I. As compared to the
manipulability feature, the correlation coefficients concerning the
jerk feature are higher in each scenario. The overall correlation co-
efficients and the corresponding p-values are summarised in Tab. L.

VIII. DISCUSSION

A. Role of Diversity (HI)

Using the two robotmimic v0.1 datasets (P and MH), we
observed no distinct correlation between input ranked groups and
the success rates; however, two cases showed strong correlation

with respect to the jerk feature as shown in Fig. 7b and 7d.
Joint-Space Jerk: Regarding the above two cases, one of the
possible reasons is that the multi-human dataset includes a
diverse-quality of demonstrations. For instance, in the proficient-
human dataset, the coefficient of variation (CV) for the lift
and pick-and-place tasks is 30.94% and 26.44%, respectively.
Conversely, in the multi-human dataset, the CV values for
these manipulation tasks are substantially higher at 89.65% and
61.62% . Furthermore, the corresponding p-values are below 0.05,
specifically 0.019 and 0.036 as shown in Tab. I, respectively.
Manipulability: The CV values for the lift and pick-and-place
tasks using the proficient-human dataset are 12.5% and 25.71%,
while in the multi-human dataset, the corresponding CV values
are 12.8% and 26.19 %, respectively. Because the datasets were
collected using a simulator, the data exhibits a skewed distribution,
particularly concerning the manipulability feature.

Overall, we hypothesize that HI may hold if we have a diverse
quality of demonstrations. This result somewhat aligns with [10],
although their study considered a set of demonstrations rather
than individual ones. For simple tasks, such as cube lifting, we
expect minimal variations in manipulability on real robots, while
noticeable joint-space jerk may occur due to the potential lack
of smoothness from novice users. Due to dataset limitations, we
plan to further investigate this hypothesis (H1) in our future work.

B. Learning Quality Features (H2)

Based on findings in study 02, the results support our second hy-

pothesis (H2) as shown in Tab. I. For each quality feature, the coef-
ficients show strong correlations between input-ranked groups and
the corresponding rollouts. All of the correlation coefficients are
higher than 0.60 in both manipulation tasks and types of datasets.
While the p-value for each case is below 0.05 as shown in Tab. L.
In the multi-human dataset, as depicted in Fig. 9b and 9d, outliers
with input group (8¢) values around 4500 and 7500 slightly
impact the results for both manipulation tasks. Additionally, the
figures illustrate consistency among ranked groups, except for the
last ones.
From the results, we posit that quality features can be transferred
from given demonstrations to the corresponding LfD model.
Alternatively, a set of demonstrations with high manipulability
measure and low jerk values will yield an LfD model that executes
tasks with nearly the same metrics as the given demonstrations.

IX. CONCLUSION

In this work, we investigated the role of quality of individual
demonstration in LfD. We quantified each demonstration’s quality
based on the quality features and then evaluated the impact of
demonstration’s quality on both task performance and task exe-
cution’s quality. This exploration involved the training of a set of
LfD models using the robomimic v0.1 dataset. In the preliminary
analysis, we selected the IRIS algorithm based on its performance,
requiring 20 demonstrations for the lift task and 30 for the pick-
and-place of soda can. In study 01, we computed the correlation
coefficients between input-ranked groups and their corresponding
success rates. The findings revealed a significant correlation in
two instances, specifically when the demonstrations exhibited
diverse qualities. Conversely, no evident correlations emerged in
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10 ® o o 4 1.0 ° ° ® ° L0 10 °
~ e ¢ © ° e ° 4 °
08 08 °* 081, 2 —— 08
g °° . . o o
©
o6 0.6 0.6 0.6 ° .
0 L]
0
[0}
8 0.4 0.4 0.4 0.4 .
3
(%]
02 Lift-PH-Jerk 0.2 Lift-MH-Jerk 02 CAN-PH-Jerk 0.2 CAN-MH-Jerk
r=0.38 r=-0.60 r=0.31 r=-0.66
0.0 0.0 0.0 0.0
2 4 6 8 10 2.5 5.0 7.5 100 125 15.0 1 2 3 4 5 6 2 4 6 8 10
(a) (b) (c) (d)
Group Ranking
Fig. 7: Correlation between input ranked groups based on the jerk feature and the corresponding success rates
0.06 Lift-PH-Manip 0.06 Lift-MH-Manip 0.06 CAN-PH-Manip
r=0.68 r=078 r=077
0.05 0.05
S}
5
3 0.04 0.04
3
% 0.03 0.031 o
CAN-MH-Manip
0.02 0.02 0.02
r=0.60
0.024 0026 0028 0030 0.032 0.040 0.045 0.050 0.055 0.060 0.065 0.022 0.023 0024 0.025 0.026 0025 0030 0035 0.040
(a) (b) (c) (d)
Input Group (ag)
Fig. 8: Correlation between input ranked groups based on the manipulability feature and the corresponding rollouts.
2000 20004 2000 3000
1750 17504 1750 [ 2750
1500 15004 1500 2500
@ 1250 1250+ 12501 ¢ 2250
E 1000 10004 1000 2000
g 750 '__',.,W 750+ 750 1750
5001 © 500+ 500 15001 §
Lift-PH-Jerk Lift-MH-Jerk CAN-PH-Jerk ' CAN-MH-Jerk
230 r=075 2501 r=084 250 r=10.86 1250 ; r=0.73
500 600 700 800 900 1000 1100 0 1000 2000 3000 4000 0 1400 1600 1800 2000 2200 100?000 2000 3000 4000 5000 6000 7000

(a) (b) (c)
Input Group (Bg)

Fig. 9: Correlation between input ranked groups based on the jerk feature and the corresponding rollouts.

the cases where the demonstrations displayed less diverse quality.

Regarding study 02, the results exhibited a strong correlation
between the quality of input-ranked group of demonstrations and
the corresponding rollouts for each quality feature.

This signify that not only the system can learn to perform
the task (i.e. typically assessed through success rate) but also

how to perform the task (through quality features). We hope that
this work can lead to develop new ways to assess LfD models
optimizing quality features rather than only looking at success
rates. Furthermore, the proposed methodology for assessing the
quality of demonstrations can be applied to a diverse range of tasks.

Although this study focused on two potential quality features



using the IRIS algorithm, we aim to assess additional relevant
features and algorithms in future research. We plan to develop
a feedback system to make capable novice users to provide
demonstrations of desired quality. This study enables to identify
the cut-off regions beyond which the quality of task execution
becomes unsatisfactory as shown in Fig. 8 and 9. Eventually, a
better execution function can be developed to guide novice users
to provide effective demonstrations.

(1]

[2

—

3

[t}

4

=

[5

=

[6

—_

(7

(8]

91

[10]

[11]
[12]

[13

—

REFERENCES

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57,
pp. 469-483, 2009.

H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, pp. 297-330, 2020. [Online].
Available:  https://www.annualreviews.org/doi/10.1146/annurev-control-
100819-063206

M. Laskey, C. Chuck, J. Lee, J. Mahler, S. Krishnan, K. Jamieson, A. Dragan,
and K. Goldberg, “Comparing human-centric and robot-centric sampling
for robot deep learning from demonstrations,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2017, pp. 358-365.
[Online]. Available: http://ieeexplore.ieee.org/document/7989046/

S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” Journal of Machine
Learning Research, vol. 15, pp. 627635, 2011.

S. Chernova and A. L. Thomaz, Robot learning from human teachers.
Morgan & Claypool Publishers, 2014.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al.,
“An algorithmic perspective on imitation learning,” Foundations and Trends®
in Robotics, vol. 7, no. 1-2, pp. 1-179, 2018.

N. Vahrenkamp and T. Asfour, “Representing the robot’s workspace through
constrained manipulability analysis,” Autonomous Robots, vol. 38, pp. 17-30,
2015.

J. Chen and A. Zelinsky, “Programing by demonstration: Coping with
suboptimal teaching actions,” The International Journal of Robotics
Research, vol. 22, no. 5, pp. 299-319, 2003.

M. Sakr, H. E. M. V. der Loos, D. Kulic, and E. Croft, “What makes a good
demonstration for robot learning generalization?” in Companion of the 2021
ACM/IEEE International Conference on Human-Robot Interaction. ACM,
2021, pp. 607-609.

M. Sakr, Z. J. Li, H. E M. V. der Loos, D. Kulic, and E. A. Croft,
“Quantifying demonstration quality for robot learning and generalization,”
IEEE Robotics and Automation Letters, vol. 7, pp. 9659-9666, 2022.

P. Dhal and C. Azad, “A comprehensive survey on feature selection in the
various fields of machine learning,” Applied Intelligence, pp. 1-39, 2022.

P. Duboue, The art of feature engineering: essentials for machine learning.
Cambridge University Press, 2020.

S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza,
the people: The role of humans in interactive machine learning,”
Al Magazine, vol. 35, pp. 105-120, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1609/aimag.v35i4.2513

“Power to

[14]

[15]

[16]

[17]

[18] M. Sakr,

[19]

[20]

[21]

[22]

[23

—_

[24]

[25]

[26]

[27]

[28]

[29]

S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot,” IEEE Transactions on Systems,
Man and Cybernetics, Part B (Cybernetics), vol. 37, pp. 286-298, 2007.
[Online]. Available: http://ieeexplore.ieee.org/document/4126276/

A. L. P. Ureche and A. Billard, “Metrics for assessing human skill when
demonstrating a bimanual task to a robot,” in Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction
Extended Abstracts. ACM, 2015, pp. 37-38. [Online]. Available:
https://dl.acm.org/doi/10.1145/2701973.2702017

K. Fischer, E. Kirstein, L. C. Jensen, N. Kruger, K. Kuklinski, M. V. aus der
Wieschen, and T. R. Savarimuthu, “A comparison of types of robot control
for programming by demonstration,” in 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI).  IEEE, 2016, pp. 213-220.
[Online]. Available: http://ieeexplore.ieee.org/document/7451754/

A. Sena and M. Howard, “Quantifying teaching behavior in
robot learning from demonstration,” The International Journal of
Robotics Research, vol. 39, pp. 54-72, 2020. [Online]. Available:

http://journals.sagepub.com/doi/10.1177/0278364919884623
Z. Zhang, B. Li, H. Zhang, V. der Loos, H. Machiel, D. Kulic,

and E. Croft, “How can everyday users efficiently teach robots by
demonstrations?” arXiv preprint arXiv:2310.13083, 2023.

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany,
and Y. Zhu, “robosuite: A modular simulation framework and benchmark
for robot learning,” in arXiv preprint arXiv:2009.12293, 2020.

N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon, “Geometry-aware
manipulability learning, tracking, and transfer,” The International Journal
of Robotics Research, vol. 40, pp. 624-650, 2021. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364920946815

T. Yoshikawa, “Manipulability of robotic mechanisms,” The international
Journal of Robotics Research, vol. 4, no. 2, pp. 3-9, 1985.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martin-Martin, “What matters in
learning from offline human demonstrations for robot manipulation,” in
Conference on Robot Learning. PMLR, 2022, pp. 1678-1690.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martin-Martin, “Robomimic v0.1
dataset,” https://robomimic.github.io/docs/datasets/robomimic_v0.1.html,
accessed: January 2, 2024.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay et al., “Roboturk: A crowdsourcing platform
for robotic skill learning through imitation,” in Conference on Robot
Learning. PMLR, 2018, pp. 879-893.

S.-A. Chen, V. Tangkaratt, H-T. Lin, and M. Sugiyama, “Active deep
g-learning with demonstration,” Machine Learning, vol. 109, no. 9, pp.
1699-1725, 2020.

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
Advances in neural information processing systems, vol. 1, 1988.

A. Mandlekar, D. Xu, R. Martin-Martin, S. Savarese, and L. Fei-
Fei, “Learning to generalize across long-horizon tasks from human
demonstrations,” arXiv preprint arXiv:2003.06085, 2020.

S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning. PMLR, 2019, pp. 2052-2062.

A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and
D. Fox, “Iris: Implicit reinforcement without interaction at scale for learning
control from offline robot manipulation data,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
4414-4420.



